Skip to main content
Log in

Coloured Noises Induced Regime Shift Yet Energy-Consuming in an E2F/Myc Genetic Circuit Involving miR-17-92

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

E2F/Myc genetic circuit carries out its biological functions expressed by phenotypic diversity to regulate cancer development; however, the cost involved in fluctuating environments is unclear. Here, considering the regulation of miR-17-92 in an E2F/Myc genetic circuit, we propose a toy model with coloured noise to focus on the effects of the noise/correlation strength (NS/CS) and the auto/cross-correlation time (AT/CT) on cell phenotype transition and energy cost. The results indicate that increasing AT/CT always slows down the bimodal regulation of NS/CS while extending AT of multiplicative noise amplifies this effect to shift the bimodal regime; the changing trend of the mean first passage time (MFPT) also confirms the regulatory function of noises, i.e., CT attenuates cancer spread induced by increasing CS. Moreover, by reconstructing the effective topology network, we can validate that there is an optimal switching path existed by regulating NS/CS and AT/CT according to the principle of minimum energy consumption, which is nearly independent of CT in the phase plane of CS to CT. The overall analysis indicates that E2F/Myc genetic circuit would regulate NS/CS and AT/CT of noises to achieve phenotype diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no new data were created or analyzed in this study.

References

  1. Balázsi, G., Oudenaarden, A., Collins, J.J.: Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011)

    Google Scholar 

  2. Arias, A.M., Brickman, J.M.: Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol. 23, 650–656 (2011)

    Google Scholar 

  3. Garcia-Ojalvo, J., Arias, A.M.: Towards a statistical mechanics of cell fate decisions. Curr. Opin. Genet. Dev. 22, 619–626 (2012)

    Google Scholar 

  4. Bose, T., Trimper, S.: A stochastic model for tumour growth with immunization. Phys. Rev. E 79, 051903 (2009)

    ADS  MathSciNet  Google Scholar 

  5. Elowitz, M.B.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    ADS  Google Scholar 

  6. Sanchez, A., Golding, I.: Genetic determinants and cellular constraints in noisy gene expression. Science 342, 1188–1193 (2013)

    ADS  Google Scholar 

  7. Sui, H., Eichler, G., Bar-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005)

    ADS  Google Scholar 

  8. Li, Q., Wennborg, A., Erik, A.: Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc. Natl. Acad. Sci. USA 113, 2672–2677 (2016)

    ADS  Google Scholar 

  9. Aguda, B.D., Kim, Y., Piper-Hunter, M.G., Friedman, A., Marsh, C.B.: MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc. Natl. Acad. Sci. USA 105, 19678–19683 (2008)

    ADS  Google Scholar 

  10. Grillari, J., Hackl, M., Grillari-Voglauer, R.: miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11, 501–506 (2010)

    Google Scholar 

  11. Li, Y., Li, Y., Zhang, H., Chen, Y.: MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network Involving miR-17-92. PLoS ONE 6, e26302 (2011)

    ADS  Google Scholar 

  12. Jia, C., Wang, L.Y., Yin, G.G., Zhang, M.Q.: Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback. Phys. Rev. E 100, 52406 (2019)

    ADS  Google Scholar 

  13. Karpova, T.S., Kim, M.J., Spriet, C., Nalley, K., Stasevich, T.J., Kherrouche, Z., McNally, J.G.: Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319, 466–469 (2008)

    ADS  Google Scholar 

  14. Pedraza, J.M., Paulsson, J.: Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008)

    ADS  Google Scholar 

  15. Gutschner, T., Hammerle, M., Eissmann, M., Hung, G., Revenko, A., Stentrup, M., Gross, M., Zornig, M.: The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013)

    Google Scholar 

  16. Hanggi, P., Mroczkowski, T.J., Moss, F., Mcclintock, P.V.: Bistability driven by coloured noise: theory and experiment. Phys. Rev. A 32, 695–698 (1985)

    ADS  Google Scholar 

  17. Ge, H., Qian, H., Xie, X.S.: Stochastic phenotype transition of a single cell in an intermediate region of gene state switching. Phys. Rev. Lett. 114, 78101–78101 (2015)

    ADS  Google Scholar 

  18. Berry, S., Dean, C., Howard, M.: Slow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activity. Cell Syst. 4, 445–457 (2017)

    Google Scholar 

  19. Li, C., Wang, E., Wang, J.: Landscape and flux decomposition for exploring global natures of non-equilibrium dynamical systems under intrinsic statistical fluctuations. Chem. Phys. Lett. 505, 75–80 (2011)

    ADS  Google Scholar 

  20. Li, C., Wang, J.: Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. USA 111, 14130–14135 (2014)

    ADS  Google Scholar 

  21. Qian, H.: The mathematical theory of molecular motor movement and chemomechanical energy transduction. J. Math. Chem. 27, 219–234 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J., Xu, L., Wang, E.: Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 105, 12271–12276 (2008)

    ADS  Google Scholar 

  23. Be Rut, A., Arakelyan, A., Petrosyan, A., CiliBeRto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    ADS  Google Scholar 

  24. Ge, H., Qian, H.: Thermodynamic limit of a nonequilibrium steady-state: maxwell-type construction for a bistable biochemical system. Phys. Rev. Lett. 103, 148103–148103 (2009)

    ADS  Google Scholar 

  25. Lebowitz, J.L., Spohn, H.: A gallavotti–cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Mehta, P., David, J.S.: Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA 109, 17978–17982 (2012)

    ADS  Google Scholar 

  27. Vainstein, M.H., Rub, J.M.: Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models. Phys. Rev. E 75, 31106–31106 (2007)

    ADS  Google Scholar 

  28. Ao, P.: Department, emerging of stochastic dynamical equalities and steady state thermodynamics from darwinian dynamics. Commun. Theor. Phys. 5, 5–22 (2008)

    MATH  Google Scholar 

  29. Jin, S., MacLean, A.L., Peng, T., Nie, Q.: scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 15, 2077–2086 (2018)

    Google Scholar 

  30. Huang, L., Yuan, Z., Yu, J., Zhou, T.: Fundamental principles of energy consumption for gene expression. Chaos 25, 123101 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Campisi, J.: Cancer and ageing: rival demons? Nat. Rev. Cancer 3, 339–349 (2003)

    Google Scholar 

  32. Raser, J.M., O’Shea, E.K.: Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    ADS  Google Scholar 

  33. Elf, J.: Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13, 2475–2484 (2003)

    Google Scholar 

  34. Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006)

    ADS  Google Scholar 

  35. Qian, H., Shi, P.Z., Xing, J.: Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys. Chem. Chem. Phys. 11, 4861–4870 (2009)

    Google Scholar 

  36. Thomas, P., Popovi, N., Grima, R.: Phenotypic switching in gene regulatory networks. Proc. Natl. Acad. Sci. USA 111, 6994–6999 (2014)

    ADS  Google Scholar 

  37. Bennett, M.R., Volfson, D., Tsimring, L., Hasty, J.: Transient dynamics of genetic regulatory networks. Biophys. J. 92, 3501–3512 (2007)

    ADS  Google Scholar 

  38. Rodrigo, G., Poyatos, J.F.: Genetic redundancies enhance information transfer in noisy regulatory circuits. PLoS Comput. Biol. 12, e1005156 (2016)

    ADS  Google Scholar 

  39. Sneppen, K., Ringrose, L.: Theoretical analysis of polycomb-trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat. Commun. 10, 2133 (2019)

    ADS  Google Scholar 

  40. Norman, T.M., Lord, N.D., Paulsson, J., Losick, R.: Memory and modularity in cell-fate decision making. Nature 503, 481–486 (2013)

    ADS  Google Scholar 

  41. Zhang, J., Zhou, T.: Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc. Natl. Acad. USA 116, 201913926 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Hermsen, R., Erickson, D.W., Hwa, T.: Speed, sensitivity, and bistability in auto-activating signaling circuits. PLoS Comput. Biol. 7, e1002265 (2011)

    ADS  Google Scholar 

  43. Wolf, L., Silander, O.K., Nimwegen, E.V.: Expression noise facilitates the evolution of gene regulation. Elife (2015). https://doi.org/10.7554/eLife.05856

    Article  Google Scholar 

  44. Zambrano, S., Bianchi, M.E., Agresti, A., Molina, N.: Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns. Phys. Rev. E 92, 022711 (2015)

    ADS  Google Scholar 

  45. Ronald, F., Fox: Numerical simulations of stochastic differential equations. J. Stat. Phys. 54, 1353–1366 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Frank, T.D.: Delay Fokker–Planck equations, Novikov’s theorem, and Boltzmann distributions as small delay approximations. Phys. Rev. E 72, 11112 (2005)

    ADS  Google Scholar 

  47. Zhu, P.: Associated relaxation time and intensity correlation function of a bistable system driven by cross-correlation additive and multiplicative coloured noise sources. Eur. Phys. J. B 55, 447–452 (2007)

    ADS  Google Scholar 

  48. Tang, Y., Yuan, R., Wang, G., Zhu, X., Ao, P.: Potential landscape of high dimensional nonlinear stochastic dynamics with large noise. Sci. Rep. 7, 15762 (2016)

    ADS  Google Scholar 

  49. Houchmandzadeh, B., Vallade, M.: Exact results for a noise-induced bistable system. Phys. Rev. E 91, 022115 (2015)

    ADS  MathSciNet  Google Scholar 

  50. Fang, X., Liu, Q., Bohrer, C., Hensel, Z., Han, W., Wang, J., Xiao, J.: Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nat. Commun. 9, 2787 (2018)

    ADS  Google Scholar 

  51. Jafarpour, F., Biancalani, T., Goldenfeld, N.: Noise-induced mechanism for biological homochirality of early life self-replicators. Phys. Rev. Lett. 115, 158101 (2015)

    ADS  Google Scholar 

  52. Lenstra, T.L., Rodriguez, J., Chen, H., Larson, D.R.: Transcription dynamics in living cells. Annu. Rev. Biophys. 45, 25 (2016)

    Google Scholar 

  53. Jin, Y., Wei, X.: Mean first-passage time of a bistable kinetic model driven by two different kinds of coloured noises. Chaos Soliton Fract. 23, 275–280 (2005)

    ADS  MATH  Google Scholar 

  54. Hanggi, P., Bartussek, R., Talkner, P., Uczka, J.: Noise-induced transport in symmetric periodic potentials: White shot noise versus deterministic noise. EPL 35, 315–317 (1996)

    ADS  Google Scholar 

  55. Ronald, F., Fox: Laser-noise analysis by first-passage-time techniques. Phys. Rev. A 34, 3405 (1986)

    ADS  MathSciNet  Google Scholar 

  56. Zhang, X.J., Qian, H., Qian, M.: Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys. Rep. 510, 1–86 (2012)

    ADS  MathSciNet  Google Scholar 

  57. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA 105, 17256–17261 (2008)

    ADS  Google Scholar 

  58. Kumar, N., Platini, T., Kulkarni, R.V.: Exact distributions for stochastic gene expression models with bursting and feedback. Phys. Rev. Lett. 113, 268105–268105 (2014)

    ADS  Google Scholar 

  59. Cao, Z., Grima, R.: Linear mapping approximation of gene regulatory networks with stochastic dynamics. Nat. Commun. 9, 3305–3305 (2018)

    ADS  Google Scholar 

  60. Xu, C.: Phenomenological bifurcation in a stochastic logistic model with correlated coloured noises. Appl. Math. Lett. 101, 106064–106064 (2019)

    MATH  Google Scholar 

  61. Cole, J.A., Luthey-Schulten, Z.: Careful accounting of extrinsic noise in protein expression reveals correlations among its sources. Phys. Rev. E 95, 062418 (2017)

    ADS  Google Scholar 

  62. Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J. 103, 1087–1096 (2012)

    ADS  Google Scholar 

  63. Baudrimont, A., Jaquet, V., Wallerich, S., Voegeli, S., Becskei, A.: Contribution of RNA degradation to intrinsic and extrinsic noise in gene expression. Cell Rep. 26, 3752–3761 (2019)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank three anonymous reviewers for valuable comments, and also thank Elsevier Language Editing again (https://webshop.elsevier.com/) for English language editing.

Funding

The work was supported by the Hainan Province Science and Technology Special Fund (Grant No. ZDYF2021SHFZ231), the National Natural Science Foundation of China (Grant Nos. 12261028, 11961018, 11761025), Natural Science Foundation of Hainan Province (Grant Nos. 120RC451, 2019RC168), Hainan Province Innovative Scientific Research Project for Graduate Students (Grant Nos. Qhys2021-208, Qhys2022-182, Qhys2022-183), the financial support from Academician Shi Jianming Station of Hainan Province.

Author information

Authors and Affiliations

Authors

Contributions

HHW and LLC proposed and designed this study, did all numerical simulations described in the paper, interpreted the results, and wrote the paper. ZGW, YW and HHW performed an analytical treatment of a stochastic differential equation. Both authors contributed to the discussions.

Corresponding author

Correspondence to Haohua Wang.

Ethics declarations

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Communicated by Lei-Han Tang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, Y., Wang, Z. et al. Coloured Noises Induced Regime Shift Yet Energy-Consuming in an E2F/Myc Genetic Circuit Involving miR-17-92. J Stat Phys 190, 84 (2023). https://doi.org/10.1007/s10955-023-03095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03095-6

Keywords

Navigation