Skip to main content
Log in

On the Universality of the Superconcentration in Mixed p-Spin Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider the mixed p-spin models with general environments such that the covariance of Hamiltonian process is non-negative. In this paper, we prove the universality of the superconcentration phenomenon. Precisely, we show that the variance of the free energy grows sublinearly in the size of its expectation when the disordered random variable satisfies some moment matching conditions. Additionally, we also study the universality of first and second moments of the free energy of a spin glass model on general hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auffinger, A., Chen, W.-K.: Universality of chaos and ultrametricity in mixed p-spin models. Commun. Pure. Appl. Math. 69, 2107–2130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, M., Damron, M., Greenwood, T.: Sublinear variance in Euclidean first-passage percolation. Stoch. Process. Appl. 130, 5060–5099 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benjamini, I., Kalai, G., Schramm, O.: First passage percolation has sublinear distance variance. Ann. Probab. 31, 1970–1978 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benaim, M., Rossignol, R.: Exponential concentration for first passage percolation through modified Poincaré inequalities. Ann. Inst. H. Poincaré Probab. Statist. 44, 544–573 (2008)

    Article  ADS  MATH  Google Scholar 

  5. Carmona, P., Hu, Y.: Universality in Sherrington-Kirkpatrick’s spin glass model. Ann. Inst. Henri Poincaré Probab. Stat. 42, 215–222 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chatterjee, S.: A simple invariance theorem. (2005). arXiv.math/0508213

  7. Chatterjee, S.: Chaos, concentration and multiple valleys. (2008). arXiv:0810.4221

  8. Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses. (2009). arXiv:0907.3381

  9. Chatterjee, S.: Superconcentration and related topics. Springer Monographs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  10. Chatterjee, S.: Superconcentration in surface growth. Random Struct. Algorithms (2021). https://doi.org/10.1002/rsa.21108

    Article  Google Scholar 

  11. Chen, Y.T.: Universality of Ghirlanda-Guerra identities and spin distributions in mixed p-spin models. Ann. Inst. H. Poincaré Probab. Stat. 55, 528–550 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Can, V.H., Nakajima, S.: First passage time of the frog model has a sublinear variance. Electron. J. Probab. 24, 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damron, M., Hanson, J., Sosoe, P.: Sublinear variance in first-passage percolation for general distributions. Probab. Theory Relat. Fields 163, 223–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guerra, F., Toninelli, L.: The thermodynamic limit in mean field spin glass models. Comm. Math. Phys. 30, 71–79 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer, New York (2013)

    Book  MATH  Google Scholar 

  16. Panchenko, D.: The Parisi formula for mixed \(p\)-spin models. Ann. Probab. 42, 946–958 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A. 13, L115 (1980)

    Article  ADS  Google Scholar 

  18. Talagrand, M.: Gaussian averages, Bernoulli averages, and Gibbs measures. Random Struct. Algorithms 21, 197–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Talagrand, M.: The Parisi formula. Ann. Math. 163, 221–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanguy, K.: Some superconcentration inequalities for extrema of stationary Gaussian processes. Stat. Prob. Let. 106, 239–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their helpful comments that greatly improve our manuscript. The work of V. H. Can is funded by the Vietnam Academy of Science and Technology grant number CTTH00.02/22-23. V. Q. Nguyen and H. S. Vu are supported by the Vingroup Innovation Foundation grant numbers VINIF.2021.TS.103 and VINIF.2020.ThS.69 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Quyet Nguyen.

Additional information

Communicated by Chiara Cammarota.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of (10) and (12)

Appendix: Proof of (10) and (12)

For the completeness of the paper, we present the proof of (10) and (12), though it is similar to that of [1, Lemma 2.2].

Using Taylor’s theorem as in [1, proof of Lemma 2.2], we obtain that

$$\begin{aligned} J&= (y_e \hat{F}(y_e) -\hat{F}'(y_e))-\hat{F}(0)y_e - \sum _{n=1}^{k-1} \hat{F}^{(n)}(0) \Big (\dfrac{y_e^{n+1}}{n!}- \dfrac{y_e^{n}}{(n-1)!} \Big ) \nonumber \\&= -\hat{F}^{(k-1)}(0) \dfrac{y_e^k}{(k-1)!} + \hat{F}^{(k-1)}(x_{e,1}) \dfrac{y_e^k}{(k-1)!} - \hat{F}^{(k)}(x_{e,3}) \dfrac{y_e^{k-1}}{(k-1)!} \end{aligned}$$
(41)
$$\begin{aligned}&= \hat{F}^{(k)}(x_{e,2}) \dfrac{y_e^{k+1}}{k!} - \hat{F}^{(k)}(x_{e,3}) \dfrac{y_e^{k-1}}{(k-1)!} , \end{aligned}$$
(42)

where \(x_{e,1},x_{e,2},x_{e,3}\) are some real numbers such that \(|x_{e,i}| \le |y_e|\) for \(i =1,2,3\). By (41), we have

$$\begin{aligned} |J| \le 2 \dfrac{\sup _{|x_e| \le |y_e|} |\hat{F}^{(k-1)}(x_{e})|}{(k-1)!} |y_e|^k + \dfrac{\sup _{|x_e| \le |y_e|} |\hat{F}^{(k)}(x_{e})|}{(k-1)!} |y_e|^{k-1}, \end{aligned}$$
(43)

and it follows from (42) that

$$\begin{aligned} |J| \le \sup _{|x_e| \le |y_e|} |\hat{F}^{(k)}(x_{e})| \Big ( \dfrac{|y_e|^{k+1}}{k!} + \dfrac{|y_e|^{k-1}}{(k-1)!} \Big ). \end{aligned}$$
(44)

For any \(K \ge 1\), taking the expectation on \(|y_e| \ge K\) for (43), we have

$$\begin{aligned} {\mathbb {E}}[|J| {\mathbb {I}}(|y_e| \ge K)]&\le \hat{I}_1, \end{aligned}$$
(45)

where

$$\begin{aligned} \hat{I}_1= \dfrac{2}{(k-1)!} {\mathbb {E}}\Big [ \Big ( \sup _{|x_e| \le |y_e|} |\hat{F}^{(k-1)}(x_{e})| + \sup _{|x_e| \le |y_e|} |\hat{F}^{(k)}(x_{e})| \Big ) |y_e|^{k} {\mathbb {I}}( |y_e| \ge K)\Big ]. \end{aligned}$$

Similarly, taking expectation on \(|y_e| \le K\) for (44) gives that

$$\begin{aligned} {\mathbb {E}}[|J|&{\mathbb {I}}(|y_e| \le K)] \nonumber \\&\le {\mathbb {E}}\Big [ \sup _{|x_e| \le |y_e|} |\hat{F}^{(k)}(x_{e})| \Big ( \dfrac{|y_e|^{k+1}}{k!} + \dfrac{|y_e|^{k-1} }{(k-1)!} \Big ){\mathbb {I}}(|y_e| \le K) \Big ] \le \hat{I}_2, \end{aligned}$$
(46)

where

$$\begin{aligned} \hat{I}_2 =K {\mathbb {E}}\Big [ \sup _{|x_e| \le |y_e|} |\hat{F}^{(k)}(x_{e})| \Big ( \dfrac{|y_e|^{k}}{k!} + \dfrac{|y_e|^{k-2}}{(k-1)!} \Big ) {\mathbb {I}}(|y_e| \le K) \Big ]. \end{aligned}$$

Since \({\mathbb {E}}[y_e^n]={\mathbb {E}}[g^n]\) for \(n=1, \ldots ,k\), we have \({\mathbb {E}}[y_e^{n+1}/(n+1)!] = {\mathbb {E}}[y_e^{n}/n!]\) for \(n=1 \ldots , k-1\) and \({\mathbb {E}}[y_e]=0\). Therefore,

$$\begin{aligned} {\mathbb {E}}[y_e \hat{F}(y_e) - \hat{F}'(y_e) ] = {\mathbb {E}}[J]. \end{aligned}$$
(47)

We then deduce from (45) and (46) that

$$\begin{aligned} |{\mathbb {E}}[y_e \hat{F}(y_e) - \hat{F}'(y_e) ]|&= |{\mathbb {E}}[J {\mathbb {I}}(|y_e| \ge K)] + {\mathbb {E}}[J {\mathbb {I}}(|y_e| < K)]| \le \hat{I}_1+ \hat{I}_2, \end{aligned}$$

as desired in (10). Finally, thanks to (44) and (47), we get (12). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, V.H., Nguyen, V.Q. & Vu, H.S. On the Universality of the Superconcentration in Mixed p-Spin Models. J Stat Phys 190, 80 (2023). https://doi.org/10.1007/s10955-023-03093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03093-8

Keywords

Navigation