Skip to main content

Transient Behavior of Damage Spreading in the Two-Dimensional Blume–Capel Ferromagnet

Abstract

We study the transient behavior of damage propagation in the two-dimensional spin-1 Blume–Capel model using Monte Carlo simulations with Metropolis dynamics. We find that, for a particular region in the second-order transition regime of the crystal field–temperature phase diagram of the model, the average Hamming distance decreases exponentially with time in the weakly damaged system. Additionally, its rate of decay appears to depend linearly on a number of Hamiltonian parameters, namely the crystal field, temperature, applied magnetic field, but also on the amount of damage. Finally, a comparative study using Metropolis and Glauber dynamics indicates a slower decay rate of the average Hamming distance for the Glauber protocol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Data will be available on request to Muktish Acharyya.

References

  1. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437 (1969)

    ADS  MathSciNet  Google Scholar 

  2. Grassberger, P.: Damage spreading and critical exponents for model A Ising dynamics. Physica A 214, 547 (1995)

    ADS  MathSciNet  Google Scholar 

  3. Stanley, H.E., Stauffer, D., Kertész, J., Herrmann, H.J.: Dynamics of spreading phenomena in two-dimensional Ising models. Phys. Rev. Lett. 59, 2326 (1987)

    ADS  Google Scholar 

  4. Coniglio, A., de Arcangelis, L., Herrmann, H.J., Jan, N.: Exact relations between damage spreading and thermodynamical properties. Europhys. Lett. 8, 315 (1989)

    ADS  Google Scholar 

  5. Le Caer, G.: Damage spreading in a three-dimensional Ising model in a magnetic field. J. Phys. A: Math. Gen. 22, L467 (1989)

    Google Scholar 

  6. da Cruz, H.R., Costa, U.M.S., Curado, E.M.F.: Spreading of damage in a 3D Ising spin glass. J. Phys. A 22, L651 (1989)

    Google Scholar 

  7. de Arcangelis, L., Coniglio, A., Herrmann, H.J.: Damage spreading in spin glasses. Eurphys. Lett. 9, 749 (1989)

    ADS  Google Scholar 

  8. de Arcangelis, L., Herrmann, H.J., Coniglio, A.: Dynamical phase transition of spin glasses in a magnetic field. J. Phys. A 22, 4659 (1989)

    ADS  Google Scholar 

  9. Barber, M.N., Derrida, B.: Dynamical phase transitions in the two-dimensional ANNNI model. J. Stat. Phys. 51, 877 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Mariz, A.M., Herrmann, H.J.: Mixing heat-bath and Glauber dynamics: damage spreading in the Ising model. J. Phys. A 22, L1081 (1989)

    ADS  Google Scholar 

  11. Mariz, A.M., Herrmann, H.J., de Arcangelis, L.: Comparative study of damage spreading in the Ising model using heat-bath, glauber, and metropolis dynamics. J. Stat. Phys. 59, 1043 (1990)

    ADS  Google Scholar 

  12. Moreira, F.G.B., de Souza, A.J.F., Mariz, A.M.: Damage spreading in the Ising model with a microcanonical constraint. Phys. Rev. E 53, 332 (1996)

    ADS  Google Scholar 

  13. Nobre, F.D., Mariz, A.M., Sousa, E.S.: Spreading of damage: an unexpected disagreement between the sequential and parallel updatings in Monte Carlo simulations. Phys. Rev. Lett. 69, 13 (1992)

    ADS  Google Scholar 

  14. Tamarit, F.A., da Silva, L.: The 2D Ising ferromagnet: spreading of damage and its conjugate field. J. Phys. A 27, L809 (1994)

    MATH  Google Scholar 

  15. Wang, F., Suzuki, M.: Time-evolution of damage in the Ising model. Physica A 223, 34 (1996)

    ADS  Google Scholar 

  16. Hinrichsen, H., Domany, E.: Damage spreading in the Ising model. Phys. Rev. E 56, 94 (1997)

    ADS  Google Scholar 

  17. Svenson, P., Johnston, D.A.: Damage spreading in small world Ising models. Phys. Rev. E 65, 036105 (2002)

    ADS  Google Scholar 

  18. Puzzo, M.L.R., Albano, E.V.: Short-time critical dynamics of damage spreading in the two-dimensional Ising model. Phys. Rev. E 81, 051116 (2010)

    ADS  Google Scholar 

  19. Bibiano, M.F.A., Moreira, F.G.B., Mariz, A.M.: Damage spreading in the q-state Potts model. Phys. Rev. E 55, 1448 (1997)

    ADS  Google Scholar 

  20. da Silva, L., Tamarit, F.A., de Magalhaes, A.C.N.: Damage spreading in a two-dimensional Potts ferromagnet in an external field. J. Phys. A 30, 2329 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  21. de Sousa Luz, E.M., Almeida, M., Costa, U., Lyra, M.L.: Damage spreading in the Potts model with cluster dynamics. Physica A 282, 176 (2000)

    ADS  Google Scholar 

  22. Redinz, J.A., Tamarit, F.A., de Magalhaes, A.C.N.: Dynamical phase transitions in the square lattice three-state chiral Potts model. Physica A 255, 439 (1998)

    ADS  Google Scholar 

  23. Anjos, A.S., Moreira, D.A., Mariz, A.M., Nobre, F.D.: Damage-spreading simulations through exact relations for the two-dimensional Potts ferromagnet. Phys. Rev. E 74, 016703 (2006)

    ADS  Google Scholar 

  24. Mariz, A.M.: Damage spreading in the Potts and Ashkin-Teller models: exact results. J. Phys. A 23, 979 (1990)

    ADS  MathSciNet  Google Scholar 

  25. Anjos, A.S., Queiroz, I.S., Mariz, A.M., da Costa, F.A.: Exact relations between damage spreading and thermodynamic functions for the N-color Ashkin–Teller model. J. Stat. Mech. 2009, P08002 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Anjos, A.S., Moreira, D.A., Mariz, A.M., Nobre, F.D., da Costa, F.A.: Using exact relations in damage-spreading simulations: the Baxter line of the two-dimensional Ashkin-Teller model. Phys. Rev. E 76, 041137 (2007)

    ADS  Google Scholar 

  27. Golinelli, O., Derrida, B.: Dynamical phase transitions in the two-dimensional XY model. J. Phys. A 22, L939 (1989)

    ADS  Google Scholar 

  28. Chiu, J., Teitel, S.: The effect of dynamics on damage spreading in the two-dimensional classical XY model. J. Phys. A 23, L891 (1990)

    ADS  Google Scholar 

  29. Tirnakli, U., Lyra, M.L.: Damage spreading in the Bak-Sneppen model: sensitivity to the initial conditions and equilibration dynamics. Int. J. Mod. Phys. 14, 805 (2003)

    ADS  Google Scholar 

  30. Bhowal, A.: Damage spreading in the ‘sandpile’ model of SOC. Physica A 247, 327 (1997)

    ADS  Google Scholar 

  31. Khaleque, A., Sen, P.: Damage spreading transition in an opinion dynamics model. Physica A 413, 599 (2014)

    ADS  MATH  Google Scholar 

  32. Miranda, E.N., Parga, N.: Dynamical phase transitions in the classical Heisenberg model. J. Phys. A 24, 1059 (1991)

    ADS  Google Scholar 

  33. Rojdestvenski, I.V., Lyra, M.L., Costa, U.M.S.: Spreading of damage in the quantum S= 1 2 Heisenberg ferromagnet. Phys. Rev. B 56, 2698 (1997)

    ADS  Google Scholar 

  34. Costa, U.M.S., Rojdestvenski, I.V., Lyra, M.L.: Spreading of damage and susceptibility in the quantum S= 1/2 Heisenberg ferromagnet. Phys. Rev. B 58, 2403 (1998)

    ADS  Google Scholar 

  35. Costa, U.M.S., de Souza, A.F., Lyra, M.L.: Diagrammatic damage spreading in the quantum Heisenberg ferromagnet. Physica A 283, 42 (2000)

    ADS  Google Scholar 

  36. Vojta, T.: Damage spreading and dynamic stability of kinetic Ising models. J. Phys. A 30, L7 (1997)

    ADS  MATH  Google Scholar 

  37. Puzzo, M.L.R., Albano E.V.: The damage spreading method in Monte Carlo simulations: a brief overview and applications to confined magnetic materials. Commun. Comput. Phys. 4, 207 (2008)

  38. Liu, C.-J., Schuttler, H.-B.: Behavior of damage spreading in the two-dimensional Blume-Capel model. Phys. Rev. E 65, 056103 (2002)

    ADS  Google Scholar 

  39. Liu, C.-J., Schuttler, H.-B., Hu, J.-Z.: Damage spreading in the mixed spin Ising model. Phys. Rev. E 65, 016114 (2001)

    ADS  Google Scholar 

  40. Costa, U.M.S., Rojdestvenski, I.V.: The spreading of damage in the vicinity of a tricritical point: two dimensional BEG model on a honeycomb lattice. Phys. Lett. A 231, 128 (1997)

    ADS  Google Scholar 

  41. Jun, L.C., Schuttler, H.-B., Zhen, H.J.: Damage spreading in the Ising model with a special metropolis dynamics approach. Commun. Theor. Phys. 35, 480 (2001)

    ADS  Google Scholar 

  42. Blume, M.: Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141, 517 (1966)

  43. Capel H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966)

  44. Capel H.W.: On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33, 295 (1967)

  45. Capel H.W.: On the possibility of first-order transitions in Ising systems of triplet ions with zero-field splitting III. Physica 37, 423 (1967)

  46. Zierenberg, J., Fytas, N.G., Weigel, M., Janke, W., Malakis, A.: Scaling and universality in the phase diagram of the 2D Blume-Capel model. Eur. Phys. J. Spec. Top. 226, 789 (2017)

    Google Scholar 

  47. Malakis, A., Berker, A.N., Hadjiagapiou, I.A., Fytas, N.G., Papakonstantinou, T.: Multicritical points and crossover mediating the strong violation of universality: Wang-Landau determinations in the random-bond d= 2 Blume-Capel model. Phys. Rev. E 81, 041113 (2010)

    ADS  Google Scholar 

  48. Kwak, W., Jeong, J., Lee, J., Kim, D.-H.: First-order phase transition and tricritical scaling behavior of the Blume-Capel model: a Wang-Landau sampling approach. Phys. Rev. E 92, 022134 (2015)

    ADS  Google Scholar 

  49. Jung, M., Kim, D.-H.: First-order transitions and thermodynamic properties in the 2D Blume-Capel model: the transfer-matrix method revisited. Eur. Phys. J. B 90, 245 (2017)

    ADS  MathSciNet  Google Scholar 

  50. Landau, D.P., Binder, K.: A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  51. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  52. Grassberger, P.: Are damage spreading transitions generically in the universality class of directed percolation? J. Stat. Phys. 79, 13 (1995)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

A. Bhowal Acharyya acknowledges computational facilities provided by DBT, Govt. of India, for developing the code. A part of the numerical calculations reported in this paper were performed at TÜBİTAK ULAKBİM (Turkish agency), High Performance, and Grid Computing Center (TRUBA Resources). Part of this work was completed during the visit of E. Vatansever at the Research Center for Fluid and Complex Systems of Coventry University, financially supported by the Scientific and Technological Research Council of Turkey. N. G. Fytas acknowledges support through the Visiting Scholar Program of Chemnitz University of Technology during which part of this work was completed.

Funding

No funding was received particularly to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muktish Acharyya.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Communicated by Deepak Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharyya, A.B., Acharyya, M., Vatansever, E. et al. Transient Behavior of Damage Spreading in the Two-Dimensional Blume–Capel Ferromagnet. J Stat Phys 190, 1 (2023). https://doi.org/10.1007/s10955-022-03012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-03012-3

Keywords