Skip to main content
Log in

An Asymptotic Radius of Convergence for the Loewner Equation and Simulation of \(SLE_{\kappa }\) Traces via Splitting

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the convergence of Taylor approximations for the backward SLE maps near the origin. In addition, this result highlights the limitations of using stochastic Taylor methods for approximating \(SLE_{\kappa }\) traces. Due to the analytically tractable vector fields of the Loewner equation, we will show the Ninomiya–Victoir splitting is particularly well suited for SLE simulation. We believe that this is the first high order numerical method that has been successfully applied to \(SLE_{\kappa }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bally, V., Rey, C.: Approximation of Markov semigroups in total variation distance. Electron. J. Probab. 21, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  2. Boedihardjo, H., Lyons, T., Yang, D.: Uniform factorial decay estimates for controlled differential equations. Electron. Commun. Probab. 20(94), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Boedihardjo, H., Ni, H., Qian, Z.: Uniqueness of signature for simple curves. J. Funct. Anal. 267(6), 1778–1806 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Margarint, V.: Convergence of Ninomiya-Victoir splitting scheme to Schramm-Loewner evolutions. arXiv:2110.10631 (2021)

  5. Foster, J., Lyons, T., Oberhauser, H.: An optimal polynomial approximation of Brownian motion. SIAM J. Numer. Anal. 58(3), 1393–1421 (2020)

    Article  MathSciNet  Google Scholar 

  6. Friz, P.K., Shekhar, A.: On the existence of SLE trace: finite energy drivers and non-constant \(\kappa \). Probab. Theory Relat. Fields 169(1–2), 353–376 (2017)

    Article  MathSciNet  Google Scholar 

  7. Friz, P.K., Tran, H.: On the Regularity of SLE Trace. In Forum of Mathematics, Sigma, vol. 5. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  8. Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, vol. 120. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Al Gerbi, A., Jourdain, B., Clément, E.: Ninomiya-Victoir scheme: strong convergence properties and discretization of the involved ordinary differential equations. arXiv:1410.5093 (2016)

  10. Gyurkó, L.G.: Differential equations driven by \(\Pi \)-rough paths. Proc. Edinb. Math. Soc. 59(3), 741–758 (2016)

    Article  MathSciNet  Google Scholar 

  11. Kennedy, T.: Numerical computations for the Schramm-Loewner evolution. J. Stat. Phys. 137, 839 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lawler, G.F.: Conformally Invariant Processes in the Plane, vol. 114. American Mathematical Society, Washington DC (2005)

    MATH  Google Scholar 

  13. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. In: Benjamini, I. (ed.) Selected Works of Oded Schramm, pp. 931–987. Springer, New York (2011)

    Chapter  Google Scholar 

  14. Lyons, T.J.: Differential equations driven by rough signals. Revista Matemática Iberoamericana 14(2), 215–310 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lyons, T.J., Gaines, J.G.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)

    Article  MathSciNet  Google Scholar 

  16. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Financ. 15, 107–121 (2008)

    Article  MathSciNet  Google Scholar 

  17. Rohde, S., Zhan, D.: Backward SLE and the symmetry of the welding. Probab. Theory Relat. Fields 164(3–4), 815–863 (2016)

    Article  MathSciNet  Google Scholar 

  18. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118(1), 221–288 (2000)

    Article  MathSciNet  Google Scholar 

  19. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21 (2009)

    Article  MathSciNet  Google Scholar 

  20. Shekhar, A., Tran, H., Wang, Y.: Remarks on Loewner chains driven by finite variation functions. Annales Academiæ Scientiarum Fennicæ 44, 311–327 (2019)

    Article  MathSciNet  Google Scholar 

  21. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 333(3), 239–244 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. Smirnov, S.: Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MathSciNet  Google Scholar 

  23. Tran, H.: Convergence of an algorithm simulating Loewner curves. Annales Academiae Scientiarum Fennicae Mathematica 40(2), 601–615 (2015)

    Article  MathSciNet  Google Scholar 

  24. Viklund, F.J., Rohde, S., Wong, C.: On the continuity of SLE \(\kappa \) in \(\kappa \). Probab. Theory Relat. Fields 159(3–4), 413–433 (2014)

    Article  MathSciNet  Google Scholar 

  25. Werness, B.: Regularity of Schramm-Loewner evolutions, annular crossings, and rough path theory. Electron. J. Probab. 17, 1–21 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Ilya Chevyrev, Dmitry Belyaev, Danyu Yang and Weijun Xi for useful suggestions and reading previous versions of this manuscript.

Funding

The first author was supported by the Department of Mathematical Sciences at the University of Bath and the DataSig programme under the EPSRC grant S026347/1. The second author was supported by the DataSig programme and Alan Turing Institute under the EPSRC Grant EP/N510129/1. The last author would like to acknowledge the support of ERC (Grant Agreement No.291244 Esig) between 2015–2017 at OMI Institute, EPSRC 1657722 between 2015-2018, Oxford Mathematical Department Grant and the EPSRC Grant EP/M002896/1 between 2018-2019. In addition, VM acknowledges the support of NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Margarint.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, J., Lyons, T. & Margarint, V. An Asymptotic Radius of Convergence for the Loewner Equation and Simulation of \(SLE_{\kappa }\) Traces via Splitting. J Stat Phys 189, 18 (2022). https://doi.org/10.1007/s10955-022-02979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02979-3

Keywords

Navigation