Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)
ADS
MathSciNet
Article
Google Scholar
Aizenman, M., Grimmett, G.: Strict monotonicity for critical points in percolation and ferromagnetic models. J. Stat. Phys. 63(5–6), 817–835 (1991)
ADS
MathSciNet
Article
Google Scholar
Balister, P., Bollobás, B., Morris, R., Smith, P.: Subcritical monotone cellular automata, arXiv e-prints (2022), available at arXiv:2203.01917
Balister, P., Bollobás, B., Przykucki, M., Smith, P.: Subcritical U-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368(10), 7385–7411 (2016)
MathSciNet
Article
Google Scholar
Balister, P., Bollobás, B., Riordan, O.: Essential enhancements revisited, arXiv e-prints (2014), available at arXiv:1402.0834
Berman, P., Simon, J.: Investigations of fault-tolerant networks of computers. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 66–77 (1988)
Bezuidenhout, C., Gray, L.: Critical attractive spin systems. Ann. Probab. 22(3), 1160–1194 (1994)
MathSciNet
Article
Google Scholar
Bezuidenhout, C., Grimmett, G.: Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19(3), 984–1009 (1991)
MathSciNet
Article
Google Scholar
Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687–722 (2015)
MathSciNet
Article
Google Scholar
Bramson, M., Gray, L.: A useful renormalization argument, In: Random Walks, Brownian Motion, and Interacting Particle Systems, pp. 113–152 (1991)
Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Kinetically constrained spin models. Probab. Theory Relat. Fields 140(3–4), 459–504 (2008)
MathSciNet
MATH
Google Scholar
Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharp phase transition for the random cluster and Potts models via decision trees. Ann. Math. 189(1), 75–99 (2019)
MathSciNet
Article
Google Scholar
Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation on \(Z^d\). Enseign. Math. 62(1), 199–206 (2016)
MathSciNet
Article
Google Scholar
Gács, P.: A new version of Toom’s proof, arXiv e-prints (2021), available at arXiv:2105.05968
Gray, L.F.: Toom’s stability theorem in continuous time. In: Perplexing Problems in Probability, pp. 331–353 (1999)
Grimmett, G.: Percolation, 2nd edn, Grundlehren der mathematischen Wissenschaften, Springer, Berlin (1999). Originally published by Springer, New York (1989)
Hartarsky, I.: U-bootstrap percolation: critical probability, exponential decay and applications. Ann. Inst. Henri Poincaré Probab. Stat. 57(3), 1255–1280 (2021)
MathSciNet
Article
Google Scholar
Hartarsky, I., Szabó, R.: Subcritical bootstrap percolation via Toom contours arXiv e-prints (2022), available at arxiv:2203.16366
Hartarsky, I., Szabó, R.: Generalised oriented site percolation. Markov Process. Relat. Fields (To appear)
Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)
ADS
MathSciNet
Article
Google Scholar
Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)
MathSciNet
MATH
Google Scholar
Louis, P.-Y.: Ergodicity of PCA: equivalence between spatial and temporal mixing conditions. Electron. Commun. Probab. 9, 119–131 (2004)
MathSciNet
Article
Google Scholar
Louis, P.-Y., Nardi, F.R. (eds.): Probabilistic Cellular Automata, Emergence, Complexity, Computation, vol. 27. Springer, Cham (2018)
Google Scholar
Marcovici, I., Sablik, M., Taati, S.: Ergodicity of some classes of cellular automata subject to noise. Electron. J. Probab. 24, 1–44 (2019)
MathSciNet
Article
Google Scholar
Menshikov, M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308–1311 (1986)
MathSciNet
Google Scholar
O’Donnell, R., Saks, M., Schramm, O., Servedio, R.A.: Every decision tree has an influential variable. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 31–39 (2005)
Salo, V., Theyssier, G., Törmä, I.: Bootstrap Percolation and cellular automata, arXiv e-prints (2021), available at arXiv:2110.00656
Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20(1), 174–193 (1992)
MathSciNet
Article
Google Scholar
Swart, J.M.: A simple proof of exponential decay of subcritical contact processes. Probab. Theory Relat. Fields 170(1–2), 1–9 (2018)
MathSciNet
Article
Google Scholar
Swart, J.M., Szabó, R., Toninelli, C.: Peierls bounds from Toom contours, arXiv e-prints (2022), available at arXiv:2202.10999
Taati, S.: Reversible cellular automata in presence of noise rapidly forget everything. In: 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021), vol. 3, pp. 1–3 (2021)
Toom, A.: Cellular automata with errors: problems for students of probability. In: Topics in Contemporary Probability and its Applications, pp. 117–157 (1995)
Toom, A.L.: Stable and attractive trajectories in multicomponent systems. Multicomponent Random Syst. 6, 549–575 (1980)
MathSciNet
MATH
Google Scholar