Appendix A: Explicit Form of
To evaluate this Mayer diagram we transform Eq. (8) as
with \(H=\intop _{0}^{\arccos x}(\sin \gamma )^{2\nu }d\gamma \), and also
$$\begin{aligned} H=\frac{(2\nu -1)!!}{2^{\nu }\nu !}\arccos x-\frac{x}{2\nu \sqrt{1-x^{2}}} \left[ \left( 1-x^{2}\right) ^{\nu }+\sum _{k=1}^{\nu -1} \frac{\prod _{i=1}^{k}(2\nu -2i+1)}{2^{k}\prod _{i=1}^{k} (\nu -i)}\left( 1-x^{2}\right) ^{\nu -k}\right] , \end{aligned}$$
where we used Eq. (C1). We integrate by parts to obtain
$$\begin{aligned} \int _{0}^{\frac{1}{2}}x^{2\nu -1}H^{2}dx=\left. \frac{x^{2\nu }}{2\nu } H^{2}\right| _{0}^{\frac{1}{2}}+\int _{0}^{\frac{1}{2}}\frac{x^{2\nu }}{\nu }\left( 1-x^{2}\right) ^{\nu -\frac{1}{2}}H\,dx, \end{aligned}$$
(A1)
where the first term on the right gives \(\frac{2^{-2\nu }}{2\nu }\left\{ \frac{(2\nu -1)!!}{2^{\nu }\nu !}\frac{\pi }{3}-\frac{\sqrt{3}}{6\nu } \left[ \left( \frac{3}{4}\right) ^{\nu }+\sum _{k=1}^{\nu -1} \frac{\prod _{i=1}^{k}(2\nu -2i+1)}{2^{k}\prod _{i=1}^{k}(\nu -i)} \left( \frac{3}{4}\right) ^{\nu -k}\right] \right\} ^{2}\). To solve the remaining integral on the right of Eq. (A1) we change variable by replacing \(x=\cos y\) to obtain
$$\begin{aligned}&\intop _{0}^{\frac{1}{2}}\frac{x^{2\nu }}{\nu }\left( 1-x^{2}\right) ^{\nu -\frac{1}{2}}H\,dx\\&= \frac{1}{\nu }\intop _{\frac{\pi }{3}}^{\frac{\pi }{2}}\left( \sin y\cos y\right) ^{2\nu }\left\{ \frac{(2\nu -1)!!}{2^{\nu }\nu !}y-\frac{\cos y}{2\nu \sin y}\left[ \left( \sin y\right) ^{2\nu }+\sum _{k=1}^{\nu -1}\frac{\prod _{i=1}^{k}(2\nu -2i+1)}{2^{k} \prod _{i=1}^{k}(\nu -i)}\left( \sin y\right) ^{2(\nu -k)}\right] \right\} dy. \end{aligned}$$
Here, there are terms that can be written using \(D\left( 2l+1,2k+1\right) \) analyzed in Eq. (39), and a term \(\intop _{\frac{\pi }{3}}^{\frac{\pi }{2}} y\left( \sin y\cos y\right) ^{2\nu }dy\) \(=2^{-2\nu -2}\intop _{\frac{2\pi }{3}}^{\pi }y\left( \sin y\right) ^{2\nu }dy\). This last integral is solved using Eq. (C2) and gives
$$\begin{aligned} \intop _{\frac{2\pi }{3}}^{\pi }y\left( \sin y\right) ^{2\nu }dy= & {} \frac{5\pi ^{2}}{18}\frac{(2\nu -1)\text {!!}}{(2\nu )!!}-\frac{\pi \sqrt{3}}{9} \left[ \frac{\left( \frac{3}{4}\right) ^{\nu }}{\nu }+\sum _{k=1}^{\nu -1} \frac{\left( \frac{3}{4}\right) ^{\nu -k}\prod _{i=0}^{k-1}(2\nu -2i-1)}{2^{k} (\nu -k)\prod _{i=0}^{k-1}(\nu -i)}\right] \\&-\frac{1}{4}\left[ \frac{\left( \frac{3}{4}\right) ^{\nu }}{\nu ^{2}}+ \sum _{k=1}^{\nu -1}\frac{\left( \frac{3}{4}\right) ^{\nu -k}\prod _{i=0}^{k-1} (2\nu -2i-1)}{2^{k}(\nu -k)^{2}\prod _{i=0}^{k-1}(\nu -i)}\right] \,. \end{aligned}$$
Thus, one finds
$$\begin{aligned} \intop _{0}^{\frac{1}{2}}x^{2\nu -1}H^{2}dx= & {} \frac{2^{-2\nu }}{2\nu }\biggl \{\frac{(2\nu -1)!!}{(2\nu )!!}\frac{\pi }{3}-\frac{\sqrt{3}}{6\nu }\biggl [\left( \frac{3}{4}\right) ^{\nu }+\sum _{k=1}^{\nu -1}\frac{\prod _{i=1}^{k}(2\nu -2i+1)}{2^{k}\prod _{i=1}^{k}(\nu -i)}\left( \frac{3}{4}\right) ^{\nu -k}\biggr ]\biggr \}^{2}\\&+\frac{(2\nu -1)!!}{2^{2(\nu +1)}\nu (2\nu )!!}\biggl \{\frac{5\pi ^{2}(2\nu -1)\text {!!}}{18(2\nu )!!}-\frac{\pi \sqrt{3}}{9}\biggl [\frac{\left( \frac{3}{4}\right) ^{\nu }}{\nu }\\&+\sum _{k=1}^{\nu -1}\frac{\left( \frac{3}{4}\right) ^{\nu -k}\prod _{i=0}^{k-1}(2\nu -2i-1)}{2^{k}(\nu -k)\prod _{i=0}^{k-1}(\nu -i)}\biggr ]\\&-\frac{1}{4}\biggl [\frac{\left( \frac{3}{4}\right) ^{\nu }}{\nu ^{2}}+\sum _{k=1}^{\nu -1}\frac{\left( \frac{3}{4}\right) ^{\nu -k}\prod _{i=0}^{k-1}(2\nu -2i-1)}{2^{k}(\nu -k)^{2}\prod _{i=0}^{k-1}(\nu -i)}\biggr ]\biggr \}\\&+\frac{1}{2\nu ^{2}}\biggl \{\frac{(2\nu -1)!\,l!}{2((2\nu -1)+l+1)!}+\sum _{k=1}^{\nu -1}\frac{\prod _{i=1}^{k}(2(2\nu -1)-2i+1)}{2^{k}\prod _{i=1}^{k}((2\nu -i)}\\&+D\left( 2\nu +1,4\nu -1\right) +\sum _{k=1}^{\nu -1}\frac{\prod _{i=1}^{k}(2\nu -2i+1)}{2^{k}\prod _{i=1}^{k}(\nu -i)}D\left( 2\nu +1,4\nu -2k-1\right) \biggr \}\,. \end{aligned}$$
The final result is given in Eq. (11).
Appendix B: Origin of \(\cos \varphi \) Term
Here we derive the identity Eq. (21) showing the origin of the \(\cos \varphi \) term. Let us start from Eq. (17)
we apply the derivative \(\frac{\partial }{\partial \sigma }\) to both sides, to obtain
Here the dashed bond corresponds to \(\delta '(\sigma -r)\), being \(f''=\frac{\partial ^{2}f}{\partial ^{2}r}=-\delta '(\sigma -r)\). Some terms on the left are readily integrated on,
and
. For the diagram with a dashed bond we have
We replace Eq. (B2) in Eq. (B1) to obtain
Appendix C: Integration of the Different Terms in L
Here we solve the split terms of L (see Eq. (35)), the four integrals: \(\left( \sqrt{3}K+\frac{4\pi }{3}\right) \int _{0}^{\frac{\pi }{3}} \sin \left( \varphi \right) ^{2m+2}d\varphi \), \(-\left( \frac{\sqrt{3}}{2}K+\frac{2\pi }{3}\right) \int _{0}^{\frac{\pi }{3}}\cos \varphi \left( \sin \varphi \right) ^{2m+2}d\varphi \), \(-2\int _{0}^{\frac{\pi }{3}}\varphi \left( \sin \varphi \right) ^{2m+2}d\varphi \), and \(\int _{0}^{\frac{\pi }{3}}\varphi \cos \varphi \left( \sin \varphi \right) ^{2m+2}d\varphi \). To solve the first one we useFootnote 5
$$\begin{aligned} \int _{0}^{u}\left( \sin \varphi \right) ^{2l}d\varphi =\frac{(2l-1)!!}{2^{l}l!} u-\frac{\cos u}{2l}\biggl [\left( \sin u\right) ^{2l-1}+\sum _{k=1}^{l-1}\frac{\prod _{i=1}^{k}(2l-2i+1)}{2^{k} \prod _{i=1}^{k}(l-i)}\left( \sin u\right) ^{2l-2k-1}\biggr ], \end{aligned}$$
(C1)
to obtain
$$\begin{aligned} \int _{0}^{\frac{\pi }{3}}\left( \sin \varphi \right) ^{2m+2}d\varphi= & {} \frac{\frac{\pi }{3}(2m+1)!!}{2^{m+1}(m+1)!}-\frac{\sqrt{3}}{8(m+1)} \biggl [\left( \frac{3}{4}\right) ^{m}+\sum _{k=1}^{m}\frac{\prod _{i=0}^{k-1} (2m-2i+1)}{2^{k}\prod _{i=0}^{k-1}(m-i)}\left( \frac{3}{4}\right) ^{m-k}\biggr ]\,. \end{aligned}$$
The second one is straightforward, it gives
$$\begin{aligned} \int _{0}^{\frac{\pi }{3}}\cos \varphi \left( \sin \varphi \right) ^{2m+2}d \varphi =\frac{\sqrt{3}}{4m+6}\left( \frac{3}{4}\right) ^{m+1}\,. \end{aligned}$$
To solve the third one, \(-2\int _{0}^{\frac{\pi }{3}}\varphi \left( \sin \varphi \right) ^{2m+2}d\varphi \), we applyFootnote 6
$$\begin{aligned}&\int _{0}^{u}x^{l}\left( \sin x\right) ^{n}dx=\frac{u^{l-1} \left( \sin u\right) ^{n-1}}{n^{2}}\left( l\sin u-n\,u\cos u\right) \nonumber \\&\quad +\frac{n-1}{n}\int _{0}^{u}x^{l}\left( \sin x\right) ^{n-2}dx-\frac{l(l-1)}{n^{2}}\int _{0}^{u}x^{l-2}\left( \sin x\right) ^{n}dx\,, \end{aligned}$$
(C2)
iteratively, to obtain
$$\begin{aligned} \int _{0}^{u}x\left( \sin x\right) ^{2n}dx= & {} \frac{u^{2}(2n-1) \text {!!}}{2\left( 2^{n}n!\right) }+\frac{1}{4}\biggl [\frac{(\sin u)^{2n}}{n^{2}}+ \sum _{k=1}^{n-1}\frac{\prod _{i=0}^{k-1}(2n-2i-1)}{2^{k}(n-k)^{2}\prod _{i=0}^{k-1}(n-i)} (\sin u)^{2(n-k)}\biggr ]\nonumber \\&-\frac{u\cos u}{2\sin u}\biggl [\frac{(\sin u)^{2n}}{n}+\sum _{k=1}^{n-1}\frac{\prod _{i=0}^{k-1}(2n-2i-1)}{2^{k}(n-k) \prod _{i=0}^{k-1}(n-i)}(\sin u)^{2(n-k)}\biggr ], \end{aligned}$$
(C3)
and finally
$$\begin{aligned} \int _{0}^{\frac{\pi }{3}}\varphi \left( \sin \varphi \right) ^{2m+2} d\varphi= & {} \frac{\pi ^{2}(2m+1)\text {!!}}{18(2m+2)!!}+\frac{1}{4} \biggl [\frac{\left( \frac{3}{4}\right) ^{m+1}}{(m+1)^{2}}+\sum _{k=1}^{m} \frac{\left( \frac{3}{4}\right) ^{m-k+1}\prod _{i=0}^{k-1}(2m-2i+1)}{2^{k} (m-k+1)^{2}\prod _{i=0}^{k-1}(m-i+1)}\biggr ]\\&-\frac{\pi \sqrt{3}}{18}\biggl [\frac{\left( \frac{3}{4}\right) ^{m+1}}{m+1}+\sum _{k=1}^{m}\frac{\left( \frac{3}{4}\right) ^{m-k+1}\prod _{i=0}^{k-1} (2m-2i+1)}{2^{k}(m-k+1)\prod _{i=0}^{k-1}(m-i+1)}\biggr ]\,. \end{aligned}$$
To solve the fourth one we useFootnote 7
$$\begin{aligned}&\int _{0}^{u}x\left( \sin x\right) ^{p}\left( \cos x\right) ^{q}\,dx\\&\quad = \frac{1}{\left( p+q\right) ^{2}}\left[ \left( p+q\right) u\left( \sin u\right) ^{p+1} \left( \cos x\right) ^{q-1}+\left( \sin u\right) ^{p}\left( \cos x\right) ^{q}\right. \,,\\&\qquad \left. -p\int _{0}^{u}\left( \sin x\right) ^{p-1}\left( \cos x\right) ^{q-1}dx +\left( q-1\right) \left( p+q\right) \int _{0}^{u}\left( \sin x\right) ^{p} \left( \cos x\right) ^{q-2}dx\right] \,. \end{aligned}$$
In particular, for \(q=1\) it reduces to
$$\begin{aligned} \int _{0}^{u}x\left( \sin x\right) ^{p}\cos x\,dx=\frac{1}{(p+1)^{2}} \left[ (p+1)u\left( \sin u\right) ^{p+1}+\left( \sin u\right) ^{p}\cos u-p\int _{0}^{u}\left( \sin x\right) ^{p-1}dx\right] \,, \end{aligned}$$
which gives the result
$$\begin{aligned} \int _{0}^{\frac{\pi }{3}}\varphi \cos \varphi \left( \sin \varphi \right) ^{2m+2} d\varphi =\frac{\pi \sqrt{3}\left( \frac{3}{4}\right) ^{m+1}}{6(2m+3)}+ \frac{\left( \frac{3}{4}\right) ^{m+1}}{2(2m+3)^{2}}-\frac{2(m+1)}{(2m+3)^{2}} \int _{0}^{\pi /3}\left( \sin x\right) ^{2m+1}dx\,. \end{aligned}$$
To solve the last integral we used Eq. (38) (with \(q=0\)) to obtain
$$\begin{aligned} \int _{0}^{\frac{\pi }{3}}\left( \sin x\right) ^{2n+1}dx=\frac{2^{n}n!}{\left( 2n+1\right) !!}-\frac{1}{2(2n+1)} \biggl [\left( \frac{3}{4}\right) ^{n}+\sum _{k=1}^{n}\frac{2^{k} \prod _{i=0}^{k-1}(n-i)}{\prod _{i=0}^{k-1}(2n-2i-1)} \left( \frac{3}{4}\right) ^{n-k}\biggr ]\,. \end{aligned}$$