Skip to main content
Log in

CLT for Non-Hermitian Random Band Matrices with Variance Profiles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the linear eigenvalue statistics of a non-Hermitian random band matrix with a continuous variance profile \(w_{\nu }(x)\) and increasing bandwidth \(b_{n}\). We show that the fluctuations of the linear eigenvalue statistics converges to \(N(0,\sigma _{f}^{2}(\nu ))\), where \(\nu =\lim _{n\rightarrow \infty }(2b_{n}/n)\in [0,1]\) and f is an analytic test function. We obtain explicit formulae of \(\sigma _{f}^{2}(\nu )\) in two different cases, namely when \(\nu \in (0,1]\) and when \(\nu = 0\). In addition, we show that \(\sigma _{f}^{2}(\nu )\rightarrow \sigma _{f}^{2}(0)\) as \(\nu \downarrow 0\). In particular by setting \(\nu =1\), we obtain the result for full non-Hermitian matrices with a constant variance profile, which was previously found by Rider and Silverstein (Ann Probab 34:2118–2143, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adhikari, K., Jana, I., Saha, K.: Linear eigenvalue statistics of random matrices with a variance profile. Random Matrices Theory Appl. 10, 2250004 (2021)

    Article  MathSciNet  Google Scholar 

  2. Alt, J., Erdős, L., Krüger, T., et al.: Local inhomogeneous circular law. Ann. Appl. Probab. 28(1), 148–203 (2018)

    Article  MathSciNet  Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    Article  MathSciNet  Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Anderson, G.W., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Relat. Fields 134(2), 283–338 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bai, Z., et al.: Circular law. Ann. Probab. 25(1), 494–529 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bandeira, A.S., Van Handel, R.: Sharp nonasymptotic bounds on the norm of random matrices with independent entries. Ann. Probab. 44(4), 2479–2506 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. Adv. Theory Math. Phys. 23(4), 841–1002 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bekerman, F., Leblé, T., Serfaty, S., et al.: Clt for fluctuations of \(\beta \)-ensembles with general potential. Electr. J. Probab. 23, 1–31 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Billingsley, P.: Probability and Measure. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  11. Bogachev, L.V., Molchanov, S.A., Pastur, L.A.: On the level density of random band matrices. Math. Notes 50(6), 1232–1242 (1991)

    Article  MathSciNet  Google Scholar 

  12. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matrices. Commun. Pure Appl. Math. 69(10), 1815–1881 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bourgade, P., Yau, H.-T., Yin, J.: Local circular law for random matrices. Probab. Theory Relat. Fields 159(3–4), 545–595 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bourgade, P., Yau, H.-T., Yin, J.: The local circular law II: the edge case. Probab. Theory Relat. Fields 159(3–4), 619–660 (2014)

    Article  MathSciNet  Google Scholar 

  15. Cook, N., Hachem, W., Najim, J., Renfrew, D.: Limiting spectral distribution for non-hermitian random matrices with a variance profile. arXiv:1612.04428 (2016)

  16. Cook, N., Hachem, W., Najim, J., Renfrew, D.: Non-Hermitian random matrices with a variance profile (I): deterministic equivalents and limiting esds. Electron. J. Probab. 23, 61 (2018)

    Article  MathSciNet  Google Scholar 

  17. Coston, N., O’Rourke, S.: Gaussian fluctuations for linear eigenvalue statistics of products of independent iid random matrices. J. Theor. Probab. 33, 1–72 (2018)

  18. Dubach, G., Peled, Y.: On words of non-Hermitian random matrices. Ann. Probab. 49(4), 1886–1916 (2021)

    Article  MathSciNet  Google Scholar 

  19. Edelman, A.: The probability that a random real gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997)

    Article  MathSciNet  Google Scholar 

  20. Geman, S.: A limit theorem for the norm of random matrices. Ann. Probab. 8(2), 252–261 (1980)

    Article  MathSciNet  Google Scholar 

  21. Geman, S.: The spectral radius of large random matrices. Ann. Probab. 14, 1318–1328 (1986)

    Article  MathSciNet  Google Scholar 

  22. Girko, V.L.: Circular law. Theory Probab. Appl. 29(4), 694–706 (1985)

    Article  MathSciNet  Google Scholar 

  23. Gorin, V., Sun, Y.: Gaussian fluctuations for products of random matrices. arXiv:1812.06532 (2018)

  24. Jain, V., Jana, I., Luh, K., O’Rourke, S.: Circular law for random block band matrices with genuinely sublinear bandwidth. J. Math. Phys. 62, 083306 (2021)

  25. Jana, I., Saha, K., Soshnikov, A.: Fluctuations of linear eigenvalue statistics of random band matrices. Theory Probab. Appl. 60(3), 407–443 (2016)

    Article  MathSciNet  Google Scholar 

  26. Johansson, K., et al.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  Google Scholar 

  27. Khorunzhy, A.: On spectral norm of large band random matrices. arXiv:math-ph/0404017 (2004)

  28. Kopel, P., O’Rourke, S., Vu, V., et al.: Random matrix products: universality and least singular values. Ann. Probab. 48(3), 1372–1410 (2020)

  29. Latala, R., van Handel, R., Youssef, P.: The dimension-free structure of nonhomogeneous random matrices. Invent. Math. 214(3), 1031–1080 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  30. Leblé, T., Serfaty, S.: Fluctuations of two dimensional coulomb gases. Geom. Funct. Anal. 28(2), 443–508 (2018)

    Article  MathSciNet  Google Scholar 

  31. Li, L., Soshnikov, A.: Central limit theorem for linear statistics of eigenvalues of band random matrices. Random Matrices Theory Appl. 2(04), 1350009 (2013)

    Article  MathSciNet  Google Scholar 

  32. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5), 1778–1840 (2009)

    Article  MathSciNet  Google Scholar 

  33. Marengo, J.E., Farnsworth, D.L., Stefanic, L.: A geometric derivation of the Irwin-Hall distribution. Int. J. Math. Math. Sci. (2017). https://doi.org/10.1155/2017/3571419

    Article  MathSciNet  MATH  Google Scholar 

  34. Medhurst, R., Roberts, J.: Evaluation of integral in (b)[2/pi infinity o (sinx/x) ncos (bx) dx. Math. Comput. 19(89), 113 (1965)

    Google Scholar 

  35. Nourdin, I., Peccati, G.: Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs. ALEA Lat. Am. J. Probab. Math. Stat. 7, 341–375 (2010)

    MathSciNet  MATH  Google Scholar 

  36. O’Rourke, S., Renfrew, D.: Central limit theorem for linear eigenvalue statistics of elliptic random matrices. J. Theor. Probab. 29(3), 1121–1191 (2016)

  37. Rider, B.: Deviations from the circular law. Probab. Theory Relat. Fields 130(3), 337–367 (2004)

    Article  MathSciNet  Google Scholar 

  38. Rider, B., Silverstein, J.W.: Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34, 2118–2143 (2006)

    Article  MathSciNet  Google Scholar 

  39. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Notices 2007, rnm006 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Shcherbina, M.: On fluctuations of eigenvalues of random band matrices. J. Stat. Phys. 161(1), 73–90 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  41. Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950)

    Article  MathSciNet  Google Scholar 

  42. Sinai, Y., Soshnikov, A.: Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Boletim da Sociedade Brasileira de Matemática - Bull./Braz. Math. Soc. 29(1), 1–24 (1998)

    Article  MathSciNet  Google Scholar 

  43. Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10(02), 261–307 (2008)

    Article  MathSciNet  Google Scholar 

  44. Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of esds and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)

    Article  MathSciNet  Google Scholar 

  45. Titchmarsh, E.C.: The Theory of Functions. Courier Corporation, North Chelmsford (1939)

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges many technical discussions with Brian Rider. The author conveys thanks to Alexander Soshnikov for mathematical discussions and sponsoring a visit to UC Davis. The author is thankful to Kartick Adhikari and Koushik Saha for providing constructive feedback about the manuscript. In addition, the author appreciates many constructive feedback provided by the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Jana.

Additional information

Communicated by Antti Knowles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this section, we discuss about the norm of non-Hermitian random matrices. A sharp almost sure bound on the spectral radius of non-Hermitian random matrices can be found in [20, 21].

Theorem A.1

[21] Let \(M=(m_{ij})_{n\times n}\) be a sequence of \(n\times n\) random matrices with \(m_{ij};1\le i,j\le n\) real valued i.i.d. for each n. Assume that for each n,

  1. (i)

    \(\mathbb {E}[m_{11}]=0\)

  2. (ii)

    \(\mathbb {E}[m_{11}^{2}]=\sigma ^{2}\)

  3. (iii)

    \(\mathbb {E}[|m_{11}|^{p}]\le p^{c p}\) for all \(p\ge 2\) and for some \(c>0\).

Let

$$\begin{aligned} \rho _{n}=\max _{1\le i\le n}\{|\lambda _{i}(M/\sqrt{n})|\}. \end{aligned}$$

Then \(\limsup _{n\rightarrow \infty }\rho _{n}\le \sigma \) almost surely.

We see that in our context if a full random matrix satisfies the condition 3.1, then it also satisfies the above condition and as a result, \(\rho _{n}\le 1\) almost surely as \(n\rightarrow \infty \). However, the above theorem does not take a variance profile into account. The following theorem from [7] estimates the norm of a symmetric random matrix with a variance profile.

Theorem A.2

[7, Corollary 3.5] Let X be a \(n\times n\) real symmetric matrix with \(X_{ij}=\xi _{ij}w_{ij}\), where \(\{\xi _{ij}:i\ge j\}\) are independent centered random variables and \(\{w_{ij}:i\ge j\}\) are give scalars. If \(\mathbb {E}[|\xi _{ij}|^{2p}]^{1/2p}\le C p^{\beta /2}\) for some \(C,\beta >0\) and all pij, then

$$\begin{aligned} \mathbb {E}\Vert X\Vert \le C'\max _{i}\sqrt{\sum _{j=1}^{n}w_{ij}^{2}}+C'\max _{i,j}|w_{ij}|\log ^{(\beta \wedge 1)/2}n, \end{aligned}$$

where C depends on \(C,\beta \) only.

Using the above theorem along with Poincaré inequality, we have the following lemma.

Lemma A.3

Let M be an \(n\times n\) random matrix as in the Theorem 3.2. Then there exists \(\rho \ge 1\) such that

$$\begin{aligned} \mathbb {P}\left( \Vert M\Vert>\rho /4+t\right) \le K\exp \left( -\sqrt{\frac{\alpha c_{n}}{2\omega }}t\right) ,\;\;\forall \;t>0, \end{aligned}$$
(A.1)

where \(K>0\) is a universal constant. In particular,

$$\begin{aligned}&\mathbb {P}(\Vert M\Vert >\rho \;\text {infinitely often})=0, \end{aligned}$$
(A.2)
$$\begin{aligned} \text {and}\;&\;\mathbb {E}[\Vert M\Vert ^{l}]\le \rho ^{l}+K\Gamma (l+1)\left( \frac{\alpha c_{n}}{2\omega }\right) ^{-l/2}\exp \left( \sqrt{\frac{\alpha c_{n}}{2\omega }}\frac{\rho }{4}\right) . \end{aligned}$$
(A.3)

Proof

First of all, we may write \(M=M_{R}+iM_{I}\), where both \(M_{R}\) and \(M_{I}\) are real valued matrices. Then we can estimate \(\Vert M\Vert \le \Vert M_{R}\Vert +\Vert M_{I}\Vert \). Therefore without loss of generality, let us consider M be a real valued matrix. Consider

$$\begin{aligned} \tilde{M}:=\left[ \begin{array}{cc} O &{} M\\ M^{*} &{} O \end{array} \right] , \end{aligned}$$

and apply Theorem A.2 on \({\tilde{M}}\) to obtain the same bound for \(\mathbb {E}\Vert \tilde{M}\Vert (=\mathbb {E}\Vert M\Vert )\). In our case, \(w_{ij}^{2}=\frac{1}{c_{n}}w_{\nu }((i-j)/n)\) or \(w_{ij}^{2}=\frac{1}{c_{n}}w_{0}((i-j)/n)\) as described in Definition 2.1. Since \(c_{n}\ge \log ^{3}n\) and w is a piece-wise continuous function, \(\lim _{n\rightarrow \infty }\sum _{j=1}^{n}w_{ij}^{2}=\int w(x)\;dx=1\) and \(\max _{i,j}|w_{ij}|\log ^{(\beta \wedge 1)/2}n\rightarrow 0\). As a result, there exists \(\rho \ge 1\) such that

$$\begin{aligned} \limsup \mathbb {E}\Vert M\Vert \le \rho /4. \end{aligned}$$

Here we note that we need \(c_{n}\) to grow at least as \(\log n\). In fact, this is a sharp condition. Otherwise, the matrix norm may be unbounded [11, 27].

Secondly, \(\Vert M\Vert \le \sqrt{\sum _{i,j}|m_{ij}|^{2}}\) implies that \(h(M):= \Vert M\Vert \) is a Lipschitz\(_{1}\) function. Therefore applying the properties of Poincaré inequality as described in Definition B.1, we have

$$\begin{aligned}&\mathbb {P}\left( |\Vert M\Vert -\mathbb {E}\Vert M\Vert |>t\right) \le K\exp \left( -\sqrt{\frac{\alpha c_{n}}{2\omega }}t\right) \\ \text {i.e.} \;&\;\mathbb {P}\left( \Vert M\Vert >\rho /4+t\right) \le K\exp \left( -\sqrt{\frac{\alpha c_{n}}{2\omega }}t\right) , \end{aligned}$$

where \(\omega =\sup _{x}w(x)\).

Equation (A.2) can be seen from the equation (A.1) along with the application of Borel–Cantelli lemma with \(t=3\rho /4\). Equation (A.3) can be justified as follows,

$$\begin{aligned} \mathbb {E}[\Vert M\Vert ^{l}]&=\int _{0}^{\rho /4}lu^{l-1}\mathbb {P}(\Vert M\Vert>u)\;du+\int _{\rho /4}^{\infty }lu^{l-1}\mathbb {P}(\Vert M\Vert >u)\;du\\&\le \rho ^{l}+Kl\exp \left( \sqrt{\frac{\alpha c_{n}}{2\omega }}\frac{\rho }{4}\right) \int _{\rho /4}^{\infty }u^{l-1}\exp \left( -\sqrt{\frac{\alpha c_{n}}{2\omega }}u\right) \;du\\&\le \rho ^{l}+K\Gamma (l+1)\left( \frac{\alpha c_{n}}{2\omega }\right) ^{-l/2}\exp \left( \sqrt{\frac{\alpha c_{n}}{2\omega }}\frac{\rho }{4}\right) . \end{aligned}$$

We would like to remark that the lemma is also true for the column removed matrices \(M^{(k)}\), and the same proof will go through. \(\square \)

We finally would like to remark that although the Theorem A.2 gives a constant bound on the norm of the matrix with a variance profile, the constant is not that sharp unlike Theorem A.1. However, we expect that for matrices with continuous variance profile, the correct norm bound should be \(\limsup _{n\rightarrow \infty }\sum _{i=1}^{n}w_{ij}^{2}\). This was remarked in [29, Remark 4.11]. In our case, this limit is equal to 1. We have mentioned in Remark 4.2 that eventually it suffices to take \(z,\eta \in \partial \mathbb {D}_{1}\) only.

Appendix B

Here we list down some key results. Interested readers may find the proofs in the included references.

Definition B.1

(Poincaré inequality). A complex random variable \(\xi \) is said to satisfy Poincaré inequality with constant \(\alpha \in (0,\infty )\) if for any differentiable function \(h:\mathbb {C}\rightarrow \mathbb {C}\), we have \(\text {Var}(h(\xi ))\le \frac{1}{\alpha }\mathbb {E}[|h'(\xi )|^{2}]\). Here \(\mathbb {C}\) is identified with \(\mathbb {R}^{2}\).

Here are some properties of Poincaré inequality

  1. (1)

    If \(\xi \) satisfies Poincaré inequality with constant \(\alpha \), then \(c\xi \) also satisfies Poincaré inequality with constant \(\alpha / c^{2}\) for any \(c\in \mathbb {R}\backslash \{0\}\).

  2. (2)

    If two independent random variables \(\xi _{1},\xi _{2}\) satisfy the Poincaré inequality with the same constant \(\alpha \), then for any differentiable function \(h:\mathbb {C}^{2}\rightarrow \mathbb {C}\), \(\text {Var}(h(\xi ))\le \frac{1}{\alpha }\mathbb {E}[\Vert \nabla h\Vert _{2}^{2}]\) i.e. \(\xi :=(\xi _{1},\xi _{2})\) also satisfies Poincaré inequality with the same constant \(\alpha \).

  3. (3)

    [4, Lemma 4.4.3] If \(\xi \in \mathbb {C}^{N}\) satisfies Poincaré inequality with constant \(\alpha \), then for any differentiable function \(h:\mathbb {C}^{N}\rightarrow \mathbb {C}\)

    $$\begin{aligned} \mathbb {P}(|h(\xi )-\mathbb {E}[h(\xi )]|>t)\le K\exp \left\{ -\frac{\sqrt{\alpha }t}{\sqrt{2}\Vert \Vert \nabla h\Vert _{2}\Vert _{\infty }} \right\} , \end{aligned}$$

    where \(K=-2\sum _{i=1}^{\infty }2^{i}\log (1-2^{-2i-1})\). Here \(\mathbb {C}^{N}\) is identified with \(\mathbb {R}^{2N}\). In the above, \(\Vert \nabla h(x)\Vert _{2}\) denotes the \(\ell ^{2}\) norm of the N-dimensional vector \(\nabla h(x)\) at \(x\in \mathbb {C}^{N}\); and \(\Vert \Vert \nabla h\Vert _{2}\Vert _{\infty }=\sup _{x\in \mathbb {C}^{N}}\Vert \nabla h(x)\Vert _{2}\). In particular if \(h:\mathbb {C}^{N}\rightarrow \mathbb {C}\) is a Lipschitz function with lipschitz constant \(\Vert h\Vert _{Lip}\), then \(\Vert \Vert \nabla h\Vert _{2}\Vert _{\infty }\le \Vert h\Vert _{Lip}\).

For example, Gaussian random variables and compactly supported continuous random variables satisfy Poincaré inequality.

Lemma B.2

[10, Theorem 35.12] Let \(\{\xi _{n,k}\}_{1\le k\le n}\) be a martingale difference array with respect to a filtration \(\{\mathcal {F}_{k,n}\}_{1\le k\le n}\). Suppose for any \(\delta >0\),

  1. (i)

    \(\lim _{n\rightarrow \infty }\sum _{k=1}^{n}\mathbb {E}[\xi _{n,k}^{2}\mathbf{1} _{|\xi _{n,k}|>\delta }]=0\),

  2. (ii)

    \(\sum _{k=1}^{n}\mathbb {E}[\xi _{n,k}^{2}|\mathcal {F}_{n,k-1}]{\mathop {\rightarrow }\limits ^{p}}\sigma ^{2}\) as \(n\rightarrow \infty \).

Then \(\sum _{k=1}^{n}\xi _{n,k}{\mathop {\rightarrow }\limits ^{d}}\mathcal {N}_{1}(0,\sigma ^{2})\).

Lemma B.3

([41], Sherman-Morrison formula). Let A and \(A+ve_{k}^{t}\) be two invertible matrices, where \(v\in \mathbb {C}^{n}\). Then

$$\begin{aligned} (A+ve_{k}^{t})^{-1}v=\frac{A^{-1}v}{1+e_{k}^{t}A^{-1}v}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, I. CLT for Non-Hermitian Random Band Matrices with Variance Profiles. J Stat Phys 187, 13 (2022). https://doi.org/10.1007/s10955-022-02892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02892-9

Keywords

Navigation