Skip to main content
Log in

\(\text {L}^2\)-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the linearized Vlasov–Poisson–Fokker–Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov–Poisson–Fokker–Planck system without any small mass assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, N.B., Dolbeault, J.: Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness). Arch. Ration. Mech. Anal. 168, 253–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdallah, N.B., Tayeb, M.L.: Diffusion approximation for the one dimensional Boltzmann–Poisson system. Discrete Contin. Dyn. Syst. Ser. B 4, 1129–1142 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Abdallah, N.B., Méhats, F., Vauchelet, N.: A note on the long time behavior for the drift-diffusion-Poisson system. C. R. Math. Acad. Sci. Paris 339, 683–688 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, A., Dolbeault, J., Schmeiser, C., Wöhrer, T.: Sharpening of decay rates in Fourier based hypocoercivity methods. In: Salvarani, F. (ed.) Recent Advances in Kinetic Equations and Applications. Springer (to appear)

  5. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. arXiv:1409.5425 (2014)

  6. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Comm. Partial Differ. Equ. 26, 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Barthe, F., Cattiaux, P., Guillin, A.: A simple proof of the Poincaré inequality for a large class of probability measures. Electron. Commun. Prob. 13 (2008)

  8. Bedrossian, J.: Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov–Fokker–Planck equation. Ann PDE 3 (2017)

  9. Biler, P., Dolbeault, J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bittencourt, J.A.: Fundamentals of Plasma Physics. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  11. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 32, 44 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107, 16459–16464 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bosi, R., Dolbeault, J., Esteban, M.J.: Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Commun. Pure Appl. Anal. 7, 533–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov—Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111, 239–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouchut, F.: Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 122, 225–238 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bouchut, F., Dolbeault, J.: On long time asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov—Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differ. Int. Equ. 8, 487–514 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Bouin, E., Dolbeault, J., Lafleche, L., Schmeiser, C.: Hypocoercivity and sub-exponential local equilibria. Monatshefte für Mathematik 194, 41–65 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C., Schmeiser, C.: Hypocoercivity without confinement. Pure Appl. Anal. 2, 203–232 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Campos, J.F., Dolbeault, J.: Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. Commun. Partial Differ. Equ. 39, 806–841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carlen, E., Loss, M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(\mathbb{S}^n\). Geom. Funct. Anal. 2, 90–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carpio, A.: Long-time behaviour for solutions of the Vlasov–Poisson–Fokker–Planck equation. Math Methods Appl. Sci. 21, 985–1014 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Carrillo, J.A., Soler, J., Vázquez, J.L.: Asymptotic behaviour and self-similarity for the three-dimensional Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141, 99–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chandrasekhar, S.: Brownian motion, dynamical friction, and stellar dynamics. Rev. Modern Phys. 21, 383–388 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  26. Dolbeault, J.: Stationary states in plasma physics: Maxwellian solutions of the Vlasov–Poisson system. Math. Models Methods Appl. Sci. 1, 183–208 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dolbeault, J.: Free energy and solutions of the Vlasov–Poisson–Fokker–Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. (9) 78, 121–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dolbeault, J., Li, X.: \(\Phi \)-Entropies: convexity, coercivity and hypocoercivity for Fokker–Planck and kinetic Fokker–Planck equations. Math. Models Methods Appl. Sci. 28, 2637–2666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dolbeault, J., Li, X.: Generalized logarithmic Hardy–Littlewood–Sobolev inequality. Int. Math. Res. Notices (2019). rnz324

  30. Dolbeault, J., Toscani, G.: Fast diffusion equations: matching large time asymptotics by relative entropy methods. Kinet. Relat. Models 4, 701–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dolbeault, J., Volzone, B.: Improved Poincaré inequalities. Nonlinear Anal. 75, 5985–6001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dolbeault, J., Markowich, P., Ölz, D., Schmeiser, C.: Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal. 186, 133–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Mathématique 347, 511–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367, 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dressler, K.: Steady states in plasma physics—the Vlasov–Fokker–Planck equation. Math. Methods Appl. Sci. 12, 471–487 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Eckmann, J.-P., Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235, 233–253 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. El Ghani, N., Masmoudi, N.: Diffusion limit of the Vlasov–Poisson–Fokker–Planck system. Commun. Math. Sci. 8, 463–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gogny, D., Lions, P.-L.: Sur les états d’équilibre pour les densités électroniques dans les plasmas. RAIRO Modél. Math. Anal. Numér. 23, 137–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goudon, T.: Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system: analysis of the two-dimensional case. Math. Models Methods Appl. Sci. 15, 737–752 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Guillin, A., Liu, W., Wu, L., Zhang, C.: The kinetic Fokker–Planck equation with mean field interaction. hal-02387517, to appear in Journal de Mathématiques Pures et Appliquées (Nov. 2019)

  41. Hérau, F.: Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46, 349–359 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Hérau, F.: Short and long time behavior of the Fokker–Planck equation in a confining potential and applications. J. Funct. Anal. 244, 95–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 151–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Herda, M., Rodrigues, L.M.: Large-time behavior of solutions to Vlasov–Poisson–Fokker–Planck equations: from evanescent collisions to diffusive limit. J. Stat. Phys. 170, 895–931 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Holley, R., Stroock, D.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46, 1159–1194 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hwang, H.J., Jang, J.: On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discr. Contin. Dynam. Syst. B 18, 681–691 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Iacobucci, A., Olla, S., Stoltz, G.: Convergence rates for nonequilibrium Langevin dynamics. Annales mathématiques du Québec 43, 73–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Il’in, A.M., Has’minskiĭ, R.Z.: On the equations of Brownian motion. Teor. Verojatnost. i Primenen. 9, 466–491 (1964)

    MathSciNet  Google Scholar 

  51. Kagei, Y.: Invariant manifolds and long-time asymptotics for the Vlasov–Poisson–Fokker–Planck equation. SIAM J. Math. Anal. 33, 489–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kolmogoroff, A.: Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. Math. (2) 35, 116–117 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kullback, S.: On the convergence of discrimination information. IEEE Trans. Inf. Theory 14, 765–766 (1968)

    Article  MathSciNet  Google Scholar 

  54. Li, X.: Asymptotic behavior of Nernst-Planck equation, hal-02310654 (2019)

  55. Li, X.: Flocking: phase transition and asymptotic behaviour, hal-02143985 and arXiv:1906.07517 (2019)

  56. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lu, Y., Mattingly, J.C.: Geometric ergodicity of Langevin dynamics with Coulomb interactions. Nonlinearity 33, 675–699 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Masmoudi, N., Tayeb, M.L.: Diffusion limit of a semiconductor Boltzmann–Poisson system. SIAM J. Math. Anal. 38, 1788–1807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Morgan J.D., III.: Schrödinger operators whose potentials have separated singularities. J. Oper. Theory 1, 109–115 (1979)

  60. Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 969 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Neunzert, H., Pulvirenti, M., Triolo, L.: On the Vlasov–Fokker–Planck equation. Math. Methods Appl. Sci. 6, 527–538 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Pavliotis, G.A., Stoltz, G., Vaes, U.: Scaling limits for the generalized Langevin equation. J. Nonlinear Sci. 31 (2021)

  63. Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143–153 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pinsker, M.S.: Information and information stability of random variables and processes. Holden-Day Inc., San Francisco, Calif, Translated and edited by Amiel Feinstein (1964)

  65. Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991)

    MathSciNet  MATH  Google Scholar 

  66. Poupaud, F., Soler, J.: Parabolic limit and stability of the Vlasov–Fokker–Planck system. Math. Models Methods Appl. Sci. 10, 1027–1045 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 295–308 (1983)

    MathSciNet  MATH  Google Scholar 

  68. Tayeb, M.L.: Homogenized diffusion limit of a Vlasov–Poisson–Fokker–Planck model. Ann. Henri Poincaré 17, 2529–2553 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Tristani, I.: Landau damping for the linearized Vlasov–Poisson equation in a weakly collisional regime. J. Stat. Phys. 169, 107–125 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Victory H.D., Jr., O’Dwyer, B.P.: On classical solutions of Vlasov–Poisson–Fokker–Planck systems. Indiana Univ. Math. J. 39, 105–156 (1990)

  71. Villani, C.: Hypocoercive diffusion operators. in International Congress of Mathematicians, vol. III, pp. 473–498. Zürich, Eur. Math. Soc. (2006)

  72. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, iv+141 (2009)

Download references

Acknowledgements

The Authors would like to thank two referees for very helpful comments and suggestions. This work has been partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR) and by the research unit Dynamical systems and their applications (UR17ES21), Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Additional information

Communicated by Stefano Olla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addala, L., Dolbeault, J., Li, X. et al. \(\text {L}^2\)-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System. J Stat Phys 184, 4 (2021). https://doi.org/10.1007/s10955-021-02784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02784-4

Keywords

Mathematics Subject Classification

Navigation