Skip to main content
Log in

Partially Phase-Locked Solutions to the Kuramoto Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Kuramoto model is a canonical model for understanding phase-locking phenomenon. It is well-understood that, in the usual mean-field scaling, full phase-locking is unlikely and that it is partially phase-locked states that are important in applications. Despite this, while there has been much attention given to existence and stability of fully phase-locked states in the finite N Kuramoto model, the partially phase-locked states have received much less attention. In this paper we present two related results. Firstly, we derive an analytical criteria that, for sufficiently strong coupling, guarantees the existence of a partially phase-locked state by proving the existence of an attracting ball around a fixed point of a subset of the oscillators. We also derive a larger invariant ball such that any point in it will asymptotically converge to the attracting ball. Secondly, we consider the large N behavior of the finite N Kuramoto system with randomly distributed frequencies. In the case where the frequencies are independent and identically distributed we use a result of De Smet and Aeyels on partial entrainment to derive a condition giving (with high probability) the existence of a partially entrained cluster. We also derive upper and lower bounds on the size of the largest entrained cluster, together with a lower bound on the order parameter. Interestingly in a series of numerical experiments we find that the observed size of the largest entrained cluster is predicted extremely well by the upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acebrón, J.A., Perales, A., Spigler, R.: Bifurcations and global stability of synchronized stationary states in the Kuramoto model for oscillator populations. Phys. Rev. E 64, 016218 (2001)

    Article  ADS  Google Scholar 

  2. Acebrón, J.A., Bonilla, L.L., Pérez, C.J., Vicente, F.R., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77(1), 137–185 (2005)

    Article  ADS  Google Scholar 

  3. Aeyels, D., Rogge, J.A.: Existence of partial entrainment and stability of phase locking behavior of coupled oscillators. Progress Theor. Phys. 112(6), 921–942 (2004)

    Article  ADS  Google Scholar 

  4. Pikovsky, M.R.A., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  5. Bronski, J.C., DeVille, L., Park, M.J.: Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. Chaos 22(3), 033133 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bronski, J.C., Gambill, T.N.: Uncertainty estimates and \({L}_2\) bounds for the Kuramoto–Sivashinsky equation. Nonlinearity 19(9), 2023 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Canale, E., Monzo, P: Almost global synchronization of symmetric Kuramoto coupled oscillators. In: Systems Structure and Control. InTech (2008)

  8. Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergodic Theory Dyn. Syst. 35(3), 762–834 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Bifurcations in the Kuramoto model on graphs. Chaos 28(7), 073109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automat. Control 54(2), 353–357 (2009)

    Article  MathSciNet  Google Scholar 

  11. Collet, P., Eckmann, J.-P., Epstein, H., Stubbe, J.: A global attracting set for the Kuramoto–Sivashinsky equation. Commun. Math. Phys. 152, 203–214 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dietert, H.: Stability and bifurcation for the Kuramoto model. J. Math. Pures Appl. 105(4), 451–489 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dietert, H., Fernandez, B., Gérard-Varet, D.: Landau damping to partially locked states in the Kuramoto model. Commun. Pure Appl. Math. 71(5), 953–993 (2018)

    Article  MathSciNet  Google Scholar 

  14. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn. Syst. 10(3), 1070–1099 (2011)

    Article  MathSciNet  Google Scholar 

  15. Ermentrout, G.B. Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol., 22(1), (1985)

  16. Fernandez, B., Gérard-Varet, D., Giacomin, G.: Landau damping in the Kuramoto model. Ann. Henri Poincaré 17(7), 1793–1823 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Giacomelli, L., Otto, F.: New bounds for the Kuramoto–Sivashinsky equation. Commun. Pure Appl. Math. 58(3), 297–318 (2005)

    Article  MathSciNet  Google Scholar 

  18. Goldman, M., Josien, M., Otto, F.: New bounds for the inhomogenous Burgers and the Kuramoto–Sivashinsky equations. Commun. Partial Differ. Equ. 40(12), 2237–2265 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gray, C.M.: Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1(1–2), 11–38 (1994)

    Article  Google Scholar 

  20. Ha, S.-Y., Ha, T., Kim, J.-H.: On the complete synchronization of the Kuramoto phase model. Physica D 239(17), 1692–1700 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum: III. Almost periodic schrödinger operators. Commun. Math. Phys. 165(1), 201–205 (1994)

    Article  ADS  Google Scholar 

  22. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  23. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  Google Scholar 

  24. Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Physica D 50(1), 15–30 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear stability and attractors. Physica D 16(2), 155–183 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  26. De Smet, D., Aeyels, D.: Partial entrainment in the finite Kuramoto- Sakaguchi model. Physica D 234(2), 81–89 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4), 1–20 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63(3–4), 613–635 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping. Phys. Rev. Lett. 68(18), 2730–2733 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. Torre, V.: A theory of synchronization of heart pace-maker cells. J. Theor. Biol. 61(1), 55–71 (1976)

    Article  MathSciNet  Google Scholar 

  31. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7(1), 134–160 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8(1), 417–453 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wittenberg, R.W.: Dissipativity, analyticity and viscous shocks in the (de)stabilized Kuramoto–Sivashinsky equation. Phys. Lett. A 300(4), 407–416 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Wittenberg, R.W.: Optimal parameter-dependent bounds for Kuramoto–Sivashinsky-type equations. Discret. Contin. Dyn. Syst. A 34(12), 5325–5357 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared C. Bronski.

Additional information

Communicated by Shin-ichi Sasa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronski, J.C., Wang, L. Partially Phase-Locked Solutions to the Kuramoto Model. J Stat Phys 183, 46 (2021). https://doi.org/10.1007/s10955-021-02783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02783-5

Keywords

Navigation