Skip to main content
Log in

The Scaling Limit of the \((\nabla +\Delta )\)-Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this article we study the scaling limit of the interface model on \({{\,\mathrm{{\mathbb {Z}}}\,}}^d\) where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which the convergence takes place. While in infinite volume the proof is based on Fourier analytic methods, in finite volume we rely on some discrete PDE techniques involving finite-difference approximation of elliptic boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, N.: Introduction to the Gaussian free field and Liouville Quantum Gravity. (2015). http://www.statslab.cam.ac.uk/~beresty/Articles/oxford4.pdf

  2. Biermé, H., Durieu, O., Wang, Y.: Generalized random fields and Lévy’s continuity theorem on the space of tempered distributions. arXiv preprint. arXiv:1706.09326 (2017)

  3. Biskup, M.: Extrema of the Two-dimensional Discrete Gaussian Free Field. arXiv preprint. arXiv:1712.09972 (2017)

  4. Bolthausen, E., Brydges, D.: Localization and decay of correlations for a pinned lattice free field in dimension two, volume Volume 36 of Lecture Notes–Monograph Series, pp. 134–149. Institute of Mathematical Statistics, Beachwood, OH. https://doi.org/10.1214/lnms/1215090066 (2001)

  5. Bolthausen, E., Cipriani, A., Kurt, N.: Exponential decay of covariances for the supercritical membrane model. Commun. Math. Phys. 353(3), 1217–1240 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  6. Borecki, M.: Pinning and wetting models for polymers with \((\nabla +\Delta )\)-interaction. Thesis, URL https://depositonce.tu-berlin.de/bitstream/11303/2765/2/Dokument_28.pdf (2010)

  7. Borecki, M., Caravenna, F.: Localization for \((1+1)\)-dimensional pinning models with \((\nabla +\Delta )\)-interaction. Electron. Commun. Probab. 15, 534–548. ISSN 1083-589X. https://doi.org/10.1214/ECP.v15-1584 (2010)

  8. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  Google Scholar 

  9. Chiarini, A., Cipriani, A., Hazra, R.S.: Extremes of the supercritical Gaussian Free Field. ALEA 13, 711–724 (2016a)

    Article  MathSciNet  Google Scholar 

  10. Chiarini, A., Cipriani, A., Hazra, R.S.: Extremes of some Gaussian random interfaces. J. Stat. Phys. 165(3), 521–544 (2016b)

    Article  MathSciNet  ADS  Google Scholar 

  11. Cipriani, A.: High points for the membrane model in the critical dimension. Electron. J. Probab. 18(86), 1–17, ISSN 1083-6489. https://doi.org/10.1214/EJP.v18-2750. http://ejp.ejpecp.org/article/view/2750 (2013)

  12. Cipriani, A., Hazra, R.S., Ruszel, W.M.: Scaling limit of the odometer in divisible sandpiles. Probab. Theory Relat. Fields. ISSN 1432-2064. https://doi.org/10.1007/s00440-017-0821-x (Dec 2017)

  13. Cipriani, A., Dan, B., Hazra, R.S.: The scaling limit of the membrane model. Ann. Probab. 47(6), 3963–4001 (2019). https://doi.org/10.1214/19-AOP1351

  14. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc., 22(4):995–1054, ISSN 0894-0347. https://doi.org/10.1090/S0894-0347-09-00636-5 (2009)

  15. Evans, L. C.: Partial Differential Equations, Volume 19. American Mathematical Society, Providence, R.I., Graduate Studies in Mathematics edition (2002)

  16. Furlan, M., Mourrat, J.-C.: A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22, 97–126 (2017). https://doi.org/10.1214/17-EJP121

    Article  MathSciNet  MATH  Google Scholar 

  17. Gazzola, F., Grunau, H., Sweers, G.: Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Number No. 1991 in Lecture Notes in Mathematics. Springer, ISBN 9783642122446. URL http://books.google.it/books?id=GwANk-YZvZQC (2010)

  18. Hida, T., Si, S.: An Innovation Approach to Random Fields: Application of White Noise Theory. World Scientific (2004). ISBN 9789812565389

  19. Ioffe, D., Velenik, Y.: A note on the decay of correlations under \(\delta \)-pinning. Probab. Theory Relat. Fields, 116(3), 379–389 (2000). ISSN 0178-8051. https://doi.org/10.1007/s004400050254

  20. Kallenberg, O.: Foundations of Modern Probability. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  21. Kurt, N.: Entropic Rpulsion for a Gaussian Membrane Model in the Critical and Supercritical Dimension. PhD thesis, University of Zurich, URL https://www.zora.uzh.ch/6319/3/DissKurt.pdf (2008)

  22. Kurt, N.: Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension. Ann. Probab. 37(2), 687–725 (2009)

    Article  MathSciNet  Google Scholar 

  23. Leibler, S.: Equilibrium statistical mechanics of fluctuating films and membranes. Statistical Mechanics of Membranes and Surfaces, pp. 49–101. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  24. Lipowsky, R.: Generic interactions of flexible membranes. Handbook of Biological Physics 1, 521–602 (1995)

    Article  Google Scholar 

  25. Lodhia, A., Sheffield, S., Sun, X., Watson, S.S.: Fractional gaussian fields: a survey. Probab. Surveys 13, 1–56 (2016). https://doi.org/10.1214/14-PS243

    Article  MathSciNet  MATH  Google Scholar 

  26. Mourrat, J.-C., Nolen, J.: Scaling limit of the corrector in stochastic homogenization. Ann. Appl. Probab. 27(4), 944–959 (2017)

    Article  MathSciNet  Google Scholar 

  27. Penrose, M.: Random Geometric Graphs, Volume 5 of Oxford Studies in Probability. Oxford University Press, Oxford, ISBN 0-19-850626-0. https://doi.org/10.1093/acprof:oso/9780198506263.001.0001 (2003)

  28. Ruiz-Lorenzo, J.J., Cuerno, R., Moro, E., Sánchez, A.: Phase transition in tensionless surfaces. Biophys. Chem. 115(2–3), 187–193 (2005)

    Article  Google Scholar 

  29. Sakagawa, H.: Entropic repulsion for a Gaussian lattice field with certain finite range interactions. J. Math. Phys. 44(7), 2939–2951 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  30. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete gaussian free field. Acta Math. 202(1), 21 (2009)

    Article  MathSciNet  Google Scholar 

  31. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007). https://doi.org/10.1007/s00440-006-0050-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Sznitman, A.-S.: Topics in Occupation Times and Gaussian Free Fields. Zurich Lectures in Advanced Mathematics. American Mathematical Society, ISBN 9783037191095. http://books.google.ch/books?id=RnENO-nQ7TIC (2012)

  33. Thomée, V.: Elliptic difference operators and Dirichlet’s problem. Contributions to Differential Equations 3(3), 319–340 (1964)

  34. Van Den Berg, M., Bolthausen, E.: Estimates for Dirichlet eigenfunctions. J. Lond. Math. Soc. 59(2), 607–619 (1999)

    Article  MathSciNet  Google Scholar 

  35. Zeitouni, O.: Branching random walks and Gaussian fields. http://www.math.umn.edu/~zeitouni/technion/pdf/notesBRW.pdf (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Cipriani.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AC is supported by grant 613.009.102 of the Netherlands Organisation for Scientific Research (NWO). RSH acknowledges MATRICS grant from SERB and the Dutch stochastics cluster STAR (Stochastics – Theoretical and Applied Research) for an invitation to TU Delft where part of this work was carried out. The authors thank Francesco Caravenna for helpful discussions, and an anonymous referee for insightful remarks and comments on a previous draft of the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriani, A., Dan, B. & Hazra, R.S. The Scaling Limit of the \((\nabla +\Delta )\)-Model. J Stat Phys 182, 39 (2021). https://doi.org/10.1007/s10955-021-02717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02717-1

Keywords

Mathematics Subject Classification

Navigation