Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16(1), 21–37 (2006)
MathSciNet
Article
Google Scholar
Andronov, A.A., Vitt, A.A., Khaĭkin, S.È.: Theory of Oscillators. Dover Publications, Inc., New York (1987). Translated from the Russian by F. Immirzi, Reprint of the 1966 translation
Antoni, M., Ruffo, S.: Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 52, 2361–2374 (1995)
Article
ADS
Google Scholar
Ashwin, P., Burylko, O.: Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25(1), (2015) 013106, 9
Bachelard, R., Dauxois, T., De Ninno, G., Ruffo, S., Staniscia, F.: Vlasov equation for long-range interactions on a lattice. Phys. Rev. E 83, 061132 (2011)
Article
ADS
Google Scholar
Barré, J., Métivier, D.: Bifurcations and singularities for coupled oscillators with inertia and frustration. Phys. Rev. Lett. 117, 214102 (2016)
Article
ADS
Google Scholar
Belykh, I.V., Brister, B.N., Belykh, V.N.: Bistability of patterns of synchrony in Kuramoto oscillators with inertia. Chaos: Interdiscip. J. Nonlinear Sci. 26(9), 094822 (2016)
MathSciNet
Article
Google Scholar
Chiba, H.: unpublished notes
Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Theory Dynam. Syst. 35(3), 762–834 (2015)
MathSciNet
Article
Google Scholar
Chiba, H., Medvedev, G.S.: The mean field analysis of the Kuramoto model on graphs I. The mean field equation and transition point formulas. Discret. Contin. Dyn. Syst. 39(1), 131–155 (2019)
MathSciNet
Article
Google Scholar
Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Instability of Mixing in the Kuramoto Model: From Bifurcations to Patterns. Pure and Applied Functional Analysis, accepted (2020)
Dörfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)
MathSciNet
Article
Google Scholar
Dupuis, P., Medvedev, G.S.: The large deviation principle for interacting dynamical systems on random graphs, arxiv preprint, 2007.13899 (2020)
Jaros, P., Brezetsky, S., Levchenko, R., Dudkowski, D., Kapitaniak, T., Maistrenko, Yu: Solitary states for coupled oscillators with inertia. Chaos 28 (2018), no. 1, 011103, 7
Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit. SIAM J. Math. Anal. 50(3), 2441–2465 (2018)
MathSciNet
Article
Google Scholar
Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002)
Google Scholar
Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34(7), 523–535 (2005)
MathSciNet
Article
ADS
Google Scholar
Medvedev, G.S.: The continuum limit of the Kuramoto model on sparse random graphs. Commun. Math. Sci. 17(4), 883–898 (2019)
MathSciNet
Article
Google Scholar
Neunzert, H.: Mathematical investigations on particle–in–cell methods. Fluid Dyn. Trans. 9, 229–254 (1978)
Google Scholar
Oliveira, R.I., Reis, G.H.: Interacting diffusions on random graphs with diverging average degrees: Hydrodynamics and large deviations. J. Stat. Phys. 176, 1057–1087 (2019)
MathSciNet
Article
ADS
Google Scholar
Olmi, S.: Chimera states in coupled Kuramoto oscillators with inertia. Chaos 25 (2015), no. 12, 123125, 13
Olmi, S., Martens, E.A., Thutupalli, S., Torcini, A.: Intermittent chaotic chimeras for coupled rotators. Phys. Rev. E 92, 030901 (2015)
Article
ADS
Google Scholar
Olmi, S., Navas, A., Boccaletti, S., Torcini, A.: Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90, 042905 (2014)
Article
ADS
Google Scholar
Olmi, S., Torcini, A.: Dynamics of Fully Coupled Rotators with Unimodal and Bimodal Frequency Distribution, pp. 25–45. Springer, Cham (2016)
Google Scholar
Omel’chenko, O.E.: The mathematics behind chimera states. Nonlinearity 31(5), R121–R164 (2018)
MathSciNet
Article
ADS
Google Scholar
Omelchenko, O.E.: Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity 26(9), 2469 (2013)
MathSciNet
Article
ADS
Google Scholar
Salam, F., Marsden, J., Varaiya, P.: Arnold diffusion in the swing equations of a power system. IEEE Trans. Circ. Syst. 31(8), 673–688 (1984)
MathSciNet
Article
Google Scholar
Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63(3–4), 613–635 (1991)
MathSciNet
Article
ADS
Google Scholar
Tanaka, H.-A., de Sousa Vieira, M., Lichtenberg, A.J., Lieberman, M.A., Oishi, S.: Stability of synchronized states in one-dimensional networks of second order PLLs. Int. J. Bifurc. Chaos Appl. Sci. Eng. 7(3), 681–690 (1997)
MathSciNet
Article
Google Scholar
Tumash, L., Olmi, S., Scholl, E.: Effect of disorder and noise in shaping the dynamics of power grids. EPL 123(2), 20001 (2018)
Tumash, L., Olmi, S., Scholl, E.: Stability and control of power grids with diluted network topology. Chaos: Interdiscip. J. Nonlinear Sci. 29(12), 123105 (2019)