Skip to main content
Log in

The 3D Vlasov–Poisson–Landau System Near 1D Local Maxwellians

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem on the Vlasov–Poisson–Landau system with the Coulomb interaction in the three dimensional space domain \({\mathbb {R}}\times {\mathbb {T}^2}\). Although there have been extensive studies on global existence and large time behavior of solutions near global Maxwellians either in \(\mathbb {T}^3\) or \(\mathbb {R}^3\), it is unknown whether solutions can be constructed around some non-trivial asymptotic profiles. In this paper, we obtain the global solutions near a spatially one-dimensional local Maxwellian connecting two distinct global Maxwellians at \(x_1=\pm \infty \), where the fluid components of the local Maxwellian are the smooth approximate rarefaction wave of the corresponding full compressible Euler system in \(x_1\in \mathbb {R}\). We also prove the large time asymptotics of global solutions towards such planar rarefaction waves, and establish the propagation of the high-order moments and regularity of solutions with large amplitude. As a byproduct, all these results can be carried over to the pure Landau equation in the same setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. l’Institut Henri Poincaré 21, 61–95 (2004)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations : Formal derivation. J. Stat. Phys. 63, 323–344 (1991)

    Article  MATH  ADS  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations : Formal derivation, II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MATH  Google Scholar 

  4. Bartuccelli, M.V., Gibbon, J.D.: Sharp constants in the Sobolev embedding theorem and a derivation of the Brezis–Gallouet interpolation inequality. J. Math. Phys. 52, 093706 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Benyi, A., Oh, T.: The Sobolev inequality on the torus revisited. Publ. Math. Debrecen 83, 359–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caflisch, R., Nicolaenko, B.: Shock profile solutions of the Boltzmann equation. Commun. Math. Phys. 86, 161–193 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. MIT Press, Cambridge (1952)

    MATH  Google Scholar 

  8. Chen, G.-Q., Chen, J.: Stability of rarefaction waves and vacuum states for the multidimensional Euler equations. J. Hyperbolic Differ. Equ. 4(1), 105–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Degond, P., Lemou, M.: Dispersion relations for the linearized Fokker–Planck equation. Arch. Ration. Mech. Anal. 138(2), 137–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials (I-II). Comm. P.D.E. 25(1–2), 179–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Duan, R.-J.: Global smooth dynamics of a fully ionized plasma with long-range collisions. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 31, 751–778 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Duan, R.-J., Liu, S.-Q.: Stability of the rarefaction wave of the Vlasov–Poisson–Boltzmann system. SIAM J. Math. Anal. 47(5), 3585–3647 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duan, R.-J., Liu, S.-Q.: The Vlasov–Poisson–Boltzmann system for a disparate mass binary mixture. J. Stat. Phys. 169(3), 614–684 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Duan, R.-J., Yu, H.-J.: The Vlasov–Poisson–Landau system near a local Maxwellian. Adv. Math. 362, 106956, 83 pp (2020)

  18. Feireisl, E., Kreml, O.: Uniqueness of rarefaction waves in multidimensional compressible Euler system. J. Hyperbolic Differ. Equ. 12(3), 489–499 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Y.: The Landau equation in periodic box. Commun. Math. Phys. 231, 391–433 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Y.: The Vlasov–Poisson–Landau system in a periodic box. J. Am. Math. Soc. 25(3), 759–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilton, F.: Collisional Transport in Plasma. Handbook of Plasma Physics. North-Holland, Amsterdam (1983)

    Google Scholar 

  23. Hsiao, L., Yu, H.-J.: On the Cauchy problem of the Boltzmann and Landau equations with soft potentials. Quart. Appl. Math. 65(2), 281–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, F.-M., Xin, Z.-P., Yang, T.: Contact discontinuity with general perturbations for gas motions. Adv. Math. 219(4), 1246–1297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lax, P.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levermore, C., Masmoudi, N.: From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 196(3), 753–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H.-L., Wang, Y., Yang, T., Zhong, M.-Y.: Stability of nonlinear wave patterns to the bipolar Vlasov–Poisson–Boltzmann system. Arch. Ration. Mech. Anal. 228(1), 39–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.-L.: On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond. A. 346, 191–3204 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Liu, T.-P., Yang, T., Yu, S.-H.: Energy method for the Boltzmann equation. Physica D 188(3–4), 178–192 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Liu, T.-P., Yang, T., Yu, S.-H., Zhao, H.-J.: Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Ration. Mech. Anal. 181(2), 333–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, T.-P., Yu, S.-H.: Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1), 133–179 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Matsumura, A., Nishihara, K.: Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 3, 3–13 (1985)

    Google Scholar 

  33. Matsumura, A., Nishihara, K.: Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas. Commun. Math. Phys. 222(3), 449–473 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Matsumura, A., Nishihara, K.: Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys. 144(2), 325–335 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Nishihara, K., Yang, T., Zhao, H.-J.: Nonlinear stability of strong rarefaction waves for compressible Navier–Stokes equations. SIAM J. Math. Anal. 35(6), 1561–1597 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smoller, J.: Shock Waves and Reaction Diffusion Equations. Springer, New York (1993)

    MATH  Google Scholar 

  37. Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31(1–3), 417–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Strain, R.M., Zhu, K.: The Vlasov-Poisson-Landau system in \(R^3\). Arch. Ration. Mech. Anal. 210(2), 615–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ukai, S., Yang, T.: Mathematical Theory of Boltzmann Equation, Lecture Notes Series-No. 8, Liu Bie Ju Centre for Math. Sci., City University of Hong Kong (2006)

  41. Villani, C.: A survey of mathematical topics in kinetic theory. In: Handbook of Mathematical Fluid Dynamics, 2002. Susan Friedlander and Denis Serre, editors. PP71–305

  42. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Villani, C.: On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Differ. Equ. 1(5), 793–816 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Wang, T., Wang, Y.: Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinet. Relat. Models 12(3), 637–679 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Y.-J.: Global solution and time decay of the Vlasov–Poisson–Landau system in \(R^3\). SIAM J. Math. Anal. 44(5), 3281–3323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Y.-J.: The two-species Vlasov–Maxwell–Landau system in \(R^3\). Ann. Inst. Henri Poincaré 32, 1099–1123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xin, Z.P., Yang, T., Yu, H.-J.: The Boltzmann Equation with soft potentials near the local Maxwellian. Arch. Ration. Mech. Anal. 206(1), 239–296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, T., Zhao, H.-J.: A half-space problem for the Boltzmann equation with specular reflection boundary condition. Commun. Math. Phys. 255(3), 683–726 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Yu, S.-H.: Nonlinear wave propagations over a Boltzmann shock profile. J. Am. Math. Soc. 23(4), 1041–1118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Renjun Duan’s research was supported by the General Research Fund (Project No. 14302817) from RGC of Hong Kong and a Direct Grant (No. 4053334) from CUHK. Hongjun Yu’s research was supported by the GDUPS 2017 and the NNSFC Grant 11871229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Clement Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Yu, H. The 3D Vlasov–Poisson–Landau System Near 1D Local Maxwellians. J Stat Phys 182, 33 (2021). https://doi.org/10.1007/s10955-021-02704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02704-6

Keywords

Mathematics Subject Classification

Navigation