Skip to main content
Log in

Statistical Mechanics of Confined Polymer Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show how the theory of the critical behaviour of d-dimensional polymer networks of arbitrary topology can be generalized to the case of networks confined by hyperplanes. This in particular encompasses the case of a single polymer chain in a bridge configuration. We further define multi-bridge networks, where several vertices are in local bridge configurations. We consider all cases of ordinary, mixed and special surface transitions, and polymer chains made of self-avoiding walks, or of mutually-avoiding walks, or at the tricritical \(\Theta \)-point. In the \(\Theta \)-point case, generalising the good-solvent case, we relate the critical exponent for simple bridges, \(\gamma _b^{\Theta }\), to that of terminally-attached arches, \(\gamma _{11}^{\Theta },\) and to the correlation length exponent \(\nu ^{\Theta }.\) We find \(\gamma _b^{\Theta } =\gamma _{11}^{\Theta }+\nu ^{\Theta }\). In the case of the special transition, we find \(\gamma _b^{\Theta }(\mathrm{sp}) =\frac{1}{2}[\gamma _{11}^{\Theta }(\mathrm{sp})+\gamma _{11}^{\Theta }]+\nu ^{\Theta }\). For general networks, the explicit expression of configurational exponents then naturally involves bulk and surface exponents for multiple random paths. In two-dimensions, we describe their Euclidean exponents from a unified perspective, using Schramm–Loewner Evolution (SLE) in Liouville quantum gravity (LQG), and the so-called KPZ relation between Euclidean and LQG scaling dimensions. This is done in the cases of ordinary, mixed and special surface transitions, and of the \(\Theta \)-point. We provide compelling numerical evidence for some of these results both in two- and three-dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Edwards, S.F.: The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. 85, 613–624 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  2. de Gennes, P.-G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. 38, 339–340 (1972)

    Google Scholar 

  3. Flory, P.: Principles of Polymer Chemistry. Cornell University Press, Cornell (1953)

    Google Scholar 

  4. de Gennes, P.-G.: Scaling Concepts in Polymer Physics. Cornell University, Cornell (1979)

    Google Scholar 

  5. Hammersley, J.M.: Percolation processes II. The connective constant. Proc. Camb. Philos. Soc. 53, 642–645 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240–243 (1972)

    ADS  Google Scholar 

  7. des Cloizeaux, J.: The Lagrangian theory of polymer solutions at intermediate concentrations. J. Phys. France 36, 281–291 (1975)

    Google Scholar 

  8. Schäfer, L., Witten, T.A.: Renormalized field theory of polymer solutions. I Scaling laws. J. Chem. Phys. 66, 2121–2130 (1977)

    ADS  Google Scholar 

  9. Schäfer, L., Witten, T.A.: Renormalized field theory of polymer solutions: extension to general polydispersity. J. Physique 41, 459–473 (1980)

    MathSciNet  Google Scholar 

  10. Witten, T.A., Schäfer, L.: Two critical ratios in polymer solutions. J. Phys. A 11, 1843–1854 (1978)

    ADS  Google Scholar 

  11. des Cloizeaux, J.: A method for determining by direct renormalization the properties of long polymers in solutions. J. Physique Lett. 41, 151–155 (1980)

    MathSciNet  Google Scholar 

  12. des Cloizeaux, J.: Polymers in solutions: principles and applications of a direct renormalization method. J. Physique 42, 635–652 (1981)

    Google Scholar 

  13. des Cloizeaux, J., Jannink, G.: Polymers in Solution, Their Modelling and Structure. Oxford University Press, Oxford (1989)

    Google Scholar 

  14. Benhamou, M., Mahoux, G.: Multiplicative renormalization of continuous polymer theories, in good and \(\theta \) solvents, up to critical dimensions. J. Physique 47, 559–568 (1986)

    Google Scholar 

  15. Duplantier, B.: Dimensional renormalizations of polymer theory. J. Phys. France 47, 569–579 (1986)

    MathSciNet  Google Scholar 

  16. de Gennes, P.-G.: Collapse of a polymer chain in poor solvents. J. Phys. Lett. 36(3), 55–57 (1975)

    ADS  Google Scholar 

  17. de Gennes, P.-G.: Collapse of a flexible polymer chain II. J. Phys. Lett. 39(17), 299–301 (1978)

    Google Scholar 

  18. Duplantier, B.: Lagrangian tricritical theory of polymer chain solutions near the \(\Theta \)-point. J. Physique 43, 991–1019 (1982)

    MathSciNet  Google Scholar 

  19. Hager, J., Schäfer, L.: \(\Theta \)-point behavior of diluted polymer solutions: Can one observe the universal logarithmic corrections predicted by field theory? Phys. Rev. E 60, 2071–2085 (1999)

    ADS  Google Scholar 

  20. Bauerschmidt, R., Slade, G.: Mean-field tricritical polymers. arXiv:1911.00395

  21. Bauerschmidt, R., Lohmann, M., Slade, G.: Three-dimensional tricritical spins and polymers. J. Math. Phys. 61, 033302 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Duplantier, B.: Tricritical polymer chains in or below three dimensions. Europhys. Lett. 1, 491–498 (1986)

    ADS  Google Scholar 

  23. Duplantier, B.: Direct or dimensional renormalizations of the tricritical polymer theory. J. Phys. France 47, 745–756 (1986)

    MathSciNet  Google Scholar 

  24. Daoud, M., Cotton, J.P., Farnoux, B., Jannink, G., Sarma, G., Benoit, H., Duplessix, C., Picot, C., de Gennes, P.-G.: Solutions of Flexible Polymers. Neutron Experiments and Interpretation Macromol. 8(6), 804–818 (1975)

    ADS  Google Scholar 

  25. Daoud, M., Jannink, G.: Temperature-concentration diagram of polymer solutions. J. Physique 37(7–8), 973–979 (1976)

    Google Scholar 

  26. Duplantier, B., Jannink, G., des Cloizeaux, J.: Tricritical effect of attractive and repulsive forces on a single polymer coil in a poor solvent. Phys. Rev. Lett. 56, 2080–2083 (1986)

  27. Anisimov, M.A., Kostko, A.F., Sengers, J.V., Yudin, I.K.: Competition of mesoscales and crossover to theta-point tricriticality in near-critical polymer solutions. J. Chem. Phys. 123, 164901 (2005)

    ADS  Google Scholar 

  28. Schäfer, L.: Excluded Volume Effects in Polymer Solutions, as Explained by the Renormalization Group. Springer, Berlin-Heidelberg (1999)

    Google Scholar 

  29. Nienhuis, B.: Exact critical point and critical exponents of \(O(n)\) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    ADS  MathSciNet  Google Scholar 

  30. Nienhuis, B.: Critical behavior of two-dimensional spin models and charge asymmetry in the coulomb gas. J. Stat. Phys. 34, 731–761 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Nienhuis, B.: Two-dimensional critical phenomena and the Coulomb Gas. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11. Academic Press, London (1987)

    Google Scholar 

  32. Cardy, J.L., Hamber, H.W.: \(O(n)\) Heisenberg model close to \(n=d=2\), Phys. Rev. Lett. 45, 499–501 (1980). Erratum Phys. Rev. Lett. 45, 1217 (1980)

  33. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2d-quantum gravity, Mod. Phys. Lett. A 3, 819–826 (1988). see also Polyakov, A.M., Quantum gravity in two dimensions, Mod. Phys. Lett. A 2, 893–898 (1987)

  34. David, F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)

    ADS  MathSciNet  Google Scholar 

  35. Distler, J., Kawai, H.: Conformal field theory and 2D quantum gravity. Nucl. Phys. B 321, 509–527 (1989)

    ADS  Google Scholar 

  36. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–210 (1981)

    ADS  MathSciNet  Google Scholar 

  37. Duplantier, B., Kostov, I.K.: Conformal spectra of polymers on a random surface. Phys. Rev. Lett. 61, 1433–1437 (1988)

    ADS  MathSciNet  Google Scholar 

  38. Duplantier, B., Kostov, I.K.: Geometrical critical phenomena on a random surface of arbitrary genus. Nucl. Phys. B 340, 491–541 (1990)

    ADS  MathSciNet  Google Scholar 

  39. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, I: Half-plane exponents. Acta Math. 187, 237–273 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, II: plane exponents. Acta Math. 187, 275–308 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents III: two-sided exponents. Ann. Inst. Henri Poincaré Probab. Stat 38(1), 109–123 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Lawler, G.F., Schramm, O., Werner, W.: The dimension of the planar Brownian frontier is 4/3. Math. Res. Lett. 8, 401–411 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, 339–364, Proc. Sympos. Pure Math., 72, Part 2, Amer. Math. Soc., Providence, RI (2004)

  48. Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \(\sqrt{2+\sqrt{2}}\). Ann. Math. 175, 1653–1665 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Beaton, N.R., Bousquet-Mélou, M., de Gier, J., Duminil-Copin, H., Guttmann, A.J.: The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is \(1+\sqrt{2}\). Commun. Math. Phys. 326, 727–754 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Wilkinson, M.K., Gaunt, D.S., Lipson, J.E.G., Whittington, S.G.: Lattice models of branched polymers: statistics of uniform stars. J. Phys. A 19, 789–796 (1986)

    ADS  Google Scholar 

  51. Duplantier, B.: Polymer network of fixed topology: renormalization, exact critical exponent \(\gamma \) in two dimensions, and \(d=4-\varepsilon \). Phys. Rev. Lett. 57, 941–944 (1986)

    ADS  MathSciNet  Google Scholar 

  52. Saleur, H.: New exact critical exponents for 2d self-avoiding walks. J. Phys. A 19, L807–810 (1986)

    ADS  Google Scholar 

  53. Lipson, J.E.G., Whittington, S.G., Wilkinson, M.K., Martin, J.L., Gaunt, D.S.: A lattice model of uniform star polymers. J. Phys. A 18, L469–L473 (1985)

    ADS  Google Scholar 

  54. Duplantier, B.: Polymer networks at the tricritical \(\Theta \)-point. Europhys. Lett. 7, 677–682 (1988)

    ADS  Google Scholar 

  55. Gaunt, D.S., Lipson, J.E.G., Whittington, S.G., Wilkinson, M.K.: Lattice models of branched polymers: uniform combs in two dimensions. J. Phys. A 19, L811–816 (1986)

    ADS  MathSciNet  Google Scholar 

  56. Duplantier, B.: Statistical mechanics of polymer networks of any topology. J. Stat. Phys. 54, 581–680 (1989)

    ADS  MathSciNet  Google Scholar 

  57. Duplantier, B., Saleur, H.: Exact surface and wedge exponents for polymers in two dimensions. Phys. Rev. Lett. 57, 3179–3182 (1986)

    ADS  MathSciNet  Google Scholar 

  58. Duplantier, B., Saleur, H.: Exact tricritical exponents for polymers at the \(\Theta \)-point in two dimensions. Phys. Rev. Lett. 59, 539–542 (1987)

    ADS  Google Scholar 

  59. Duplantier, B., Guttmann, A.J.: New scaling laws for self-avoiding walks: bridges and worms, J. Stat. Mech. (2019) 104010, special issue dedicated to the Memory of Vladimir Rittenberg. https://doi.org/10.1088/1742-5468/ab4584, https://iopscience.iop.org/article/10.1088/1742-5468/ab4584/pdf

  60. Schäfer, L., von Ferber, C., Lehr, U., Duplantier, B.: Renormalization of polymer networks and stars. Nucl. Phys. B 374(3), 473–495 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Duplantier, B.: Conformal fractal geometry & boundary quantum gravity. Fractal geometry and applications: a Jubilee of Benoît Mandelbrot. In: Lapidus, M.L., van Frankenhuijsen, M. (eds.) Proceeding of Symposia Pure Math, vol. 74, pp. 365–482. AMS, Providence (2004)

    Google Scholar 

  62. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees, Astérisque, Société Mathématique de France, Paris (in press), 2020, arXiv:1409.7055 (2014)

  63. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Duplantier, B.: Intersections of random walks. A direct renormalization approach. Commun. Math. Phys. 117, 279–329 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Batchelor, M.T., Bennett-Wood, D., Owczarek, A.L.: Two-dimensional polymer networks at a mixed boundary: surface and wedge exponents. Eur. Phys. J. B 5, 139–142 (1998)

    ADS  Google Scholar 

  66. Diehl, H.W., Dietrich, S., Eisenriegler, E.: Universality, irrelevant surface operators, and corrections to scaling in systems with free surfaces and defect planes. Phys. Rev. B 27, 2937–2954 (1983)

    ADS  Google Scholar 

  67. Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Beffara, V., Peltola, E., Wu, H.: On the uniqueness of global multiple SLEs, (2018). arXiv:1801.07699

  69. Dubédat, J.: Commutation relations for Schramm–Loewner evolutions. Commun. Pure Appl. Math. 60, 1792–1847 (2007)

    MathSciNet  MATH  Google Scholar 

  70. Graham, K.: On multiple Schramm–Loewner evolutions. J. Stat. Mech. Theory Exp. 3, P03008 (2007)

    MathSciNet  MATH  Google Scholar 

  71. Kozdron, M.J., Lawler, G.F.: The configurational measure on mutually avoiding SLE paths, In: Universality and renormalization, volume 50 of Fields Inst. Commun., 199–224. Am. Math. Soc., Providence, RI (2007)

  72. Kytölä, K., Peltola, E.: Pure partition functions of multiple SLEs. Commun. Math. Phys. 346(1), 237–292 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Lawler, G.F.: Partition functions, loop measure, and versions of SLE. J. Stat. Phys. 134(5–6), 813–837 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Wu, H.: Polychromatic arm exponents for the critical planar FK-Ising model. J. Stat. Phys. 170, 1177–1196 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Wu, H., Zhan, D.: Boundary arm exponents for SLE. Electron. J. Probab. 22(89), 26 (2017)

    MathSciNet  MATH  Google Scholar 

  76. Peltola, E.: Toward a conformal field theory for Schramm-Loewner evolutions, J. Math. Phys. 60, 103305, (2019), Special Collection: International Congress on Mathematical Physics (ICMP), Montréal (2018)

  77. Peltola, E., Wu, H.: Global and local multiple SLEs for \(\kappa \le 4\) and connection probabilities for level lines of GFF. Commun. Math. Phys. 366, 469–536 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  78. Cardy, J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240(12), 514–532 (1984)

    ADS  Google Scholar 

  79. Saleur, H.: Conformal invariance for polymers and percolation. J. Phys. A 20, 455–470 (1987)

    ADS  Google Scholar 

  80. Batchelor, M.T., Blöte, H.W.J.: Conformal invariance and critical behavior of the \(O(n)\) model on the honeycomb lattice. Phys. Rev. B 39, 2391–2402 (1989)

    ADS  MathSciNet  Google Scholar 

  81. Guim, I., Burkhardt, T.W.: Transfer-matrix study of the adsorption of a flexible self-avoiding polymer chain in two dimensions. J. Phys. A 22, 1131–1140 (1989)

    ADS  Google Scholar 

  82. Burkhardt, T.W., Eisenriegler, E., Guim, I.: Conformal theory of energy correlations in the semi-infinite two-dimensional \(O(N)\) model. Nucl. Phys. B 316, 559–572 (1989)

    ADS  MathSciNet  Google Scholar 

  83. Burkhardt, T.W., Eisenriegler, E.: Conformal theory of the two-dimensional \(0(N)\) model with ordinary, extraordinary, and special boundary conditions. Nucl. Phys. B 424, 48–504 (1994)

    MathSciNet  MATH  Google Scholar 

  84. Batchelor, M.T., Suzuki, J.: Exact solution and surface critical behaviour of an \(O(n)\) model on the honeycomb lattice. J. Phys. A. 26, L729–L735 (1993)

    ADS  MathSciNet  Google Scholar 

  85. Eisenriegler, E.: Polymers Near Surfaces. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  86. Diehl, H.W.: Field-theoretical approach to critical behaviour at surfaces. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 10, pp. 76–267. Academic Press, London and New York (1986)

    Google Scholar 

  87. Diehl, H.W., Dietrich, S.: Scaling laws and surface exponents from renormalization group equations. Phys. Lett. 80(A), 408–412 (1980)

    MathSciNet  Google Scholar 

  88. Diehl, H.W., Dietrich, S.: Field-theoretical approach to multicritical behavior near free surfaces. Phys. Rev. B 24, 2878–2880 (1981)

    ADS  Google Scholar 

  89. von Ferber, C., Holovatch, Y.: Copolymer networks and stars: scaling exponents. Phys. Rev. E 56, 6370–6386 (1997)

    ADS  Google Scholar 

  90. Duplantier, B., Kwon, K.-H.: Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61, 2514–2517 (1988)

    ADS  Google Scholar 

  91. Duplantier, B.: Random walks and quantum gravity in two dimensions. Phys. Rev. Lett. 81, 5489–5492 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Fendley, P., Saleur, H.: Exact theory of polymer adsorption in analogy with the Kondo problem. J. Phys. A 27, L789–L796 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  93. Batchelor, M.T., Yung, C.M.: Exact results for the adsorption of a flexible self-avoiding polymer chain in two dimensions. Phys. Rev. Lett. 74, 2026–2029 (1995)

    ADS  Google Scholar 

  94. Batchelor, M.T., Yung, C.M.: Surface critical behaviour of the honeycomb \(O(n)\) loop model with mixed ordinary and special boundary conditions. J. Phys. A 28, L421–L426 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  95. Yung, C.M., Batchelor, M.T.: \(O(n)\) model on the honeycomb lattice via reflection matrices: surface critical behaviour. Nucl. Phys. B 453, 552–580 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  96. Duplantier, B.: Two-dimensional fractal geometry, critical phenomena and conformal invariance. Phys. Rep. 184, 229–257 (1989)

    ADS  MathSciNet  Google Scholar 

  97. Duplantier, B.: Conformal random geometry. In: Dunlop, F., den Hollander, F., van Enter, A., Dalibard, J. (eds.) Mathematical Statistical Physics. Les Houches Summer School LXXXIII, pp. 101–217. Elsevier, Amsterdam (2006)

    Google Scholar 

  98. Kazakov, V.A.: Ising model on a dynamical planar random lattice: Exact solution. Phys. Lett. A 119, 140–144 (1986)

    ADS  MathSciNet  Google Scholar 

  99. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44(5), 3474–3545 (2016)

    MathSciNet  MATH  Google Scholar 

  100. Duplantier, B., Sheffield, S.: Duality and the Knizhnik–Polyakov–Zamolodchikov relation in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009)

    ADS  MathSciNet  Google Scholar 

  101. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Prob. Stat. 15, 358–371 (2011)

    MathSciNet  MATH  Google Scholar 

  102. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun. Math. Phys. 330, 283–330 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  103. Duplantier, B.: A rigorous perspective on Liouville quantum gravity and the KPZ relation. In: Ouvry, S., Jacobsen, J., Pasquier, V., Serban, D., Cugliandolo, L. (eds.) Exact Methods in Low-Dimensional Statistical Physics and Quantum Theory. (Les Houches Summer School LXXXIX, 2008), pp. 529–561. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  104. Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323, 451–485 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  105. Duplantier, B.: Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84, 1363–1367 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  106. Duplantier, B.: Higher conformal multifractality. J. Stat. Phys. 110, 691–738 (2003)

    MathSciNet  MATH  Google Scholar 

  107. Duplantier, B.: Liouville Quantum Gravity, KPZ Relation and Schramm–Loewner Evolution. In: Jang, S.J. et al. (eds.) Proceeding of the International Congress of Mathematicians, Seoul 2014, Vol. III, 1035–1061 (2014). https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.3/ICM2014.3.pdf

  108. Gwynne, E., Holden, N., Sun, X.: Mating of trees for random planar maps and Liouville quantum gravity: a survey, arXiv:1910.04713

  109. Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004)

    ADS  MATH  Google Scholar 

  110. Duplantier, B.: Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts and \(O(n)\) models. J. Stat. Phys. 49, 411–431 (1987)

    ADS  MathSciNet  Google Scholar 

  111. Dubédat, J.: SLE\((\kappa,\rho )\) martingales and duality. Ann. Probab. 33(1), 223–243 (2005)

    MathSciNet  MATH  Google Scholar 

  112. Zhan, D.: Duality of chordal SLE. Invent. Math. 174, 309–353 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  113. Werner, W.: Lectures on random planar curves and Schramm-Loewner evolution. École dÉté de Probabilités de Saint-Flour, Lecture Notes in Math, vol. 1840, pp. 107–195. Springer, Berlin (2004)

  114. Werner, W.: Girsanov transformation for SLE\((\kappa, \rho )\) processes, intersection exponents and hiding exponent. Ann. Fac. Sci. Toulouse Math. 13(1), 121–147 (2004)

    MathSciNet  Google Scholar 

  115. Dubail, J., Jacobsen, J.L., Saleur, H.: Exact solution of the anisotropic special transition in the \(O(n)\) model in two dimensions. Phys. Rev. Lett. 103, 145701 (2009)

    ADS  Google Scholar 

  116. Dubail, J., Jacobsen, J.L., Saleur, H.: Conformal boundary conditions in the critical \(O(n)\) model and dilute loop models. Nucl. Phys. B 827, 457–502 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  117. Miller, J., Wu, H.: Intersections of SLE paths: the double and cut point dimension of SLE. Probab. Theory Relat. Fields 167, 45–105 (2017)

    MathSciNet  MATH  Google Scholar 

  118. Wang, M., Wu, H.: Remarks on the intersection of \(\text{SLE}_\kappa (\rho )\) curve with the real line. arXiv:1507.00218

  119. Duplantier, B., Sheffield, S.: Schramm–Loewner evolution and Liouville quantum gravity. Phys. Rev. Lett. 107, 131305 (2011)

    ADS  Google Scholar 

  120. Miller, J., Sheffield, S.: Imaginary geometry II, reversibility of \(\text{SLE}_\kappa\,(\rho _1;\rho _2)\) for \(\kappa \in (0,4)\). Ann. Probab. 44(3), 1647–1722 (2016)

    MathSciNet  Google Scholar 

  121. Diehl, H.W., Eisenriegler, E.: Irrelevance of surface anisotropies for critical behavior near free surface. Phys. Rev. Lett. 48, 1767 (1982)

    ADS  Google Scholar 

  122. Diehl, H.W., Eisenriegler, E.: Effects of surface exchange anisotropies on magnetic critical and multicritical behavior at surfaces. Phys. Rev. B 30, 300 (1984)

    ADS  MathSciNet  Google Scholar 

  123. Dubail, J.: Conditions aux bords dans des théories conformes non-unitaires, PhD Thesis, (2010). https://tel.archives-ouvertes.fr/tel-00555624/document

  124. Bourgine, J.-E., Hosomichi, K., Kostov, I.: Boundary transitions of the \(O(n\)) model on a dynamical lattice. Nucl. Phys. B 832, 462–499 (2010)

    ADS  MATH  Google Scholar 

  125. Duplantier, B.: Two-dimensional copolymers and exact conformal multifractality. Phys. Rev. Lett. 82, 880–883 (1999)

    ADS  Google Scholar 

  126. Dyhr, B., Gilbert, M., Kennedy, T., Lawler, G.F., Passon, S.: The self-avoiding walk spanning a strip. J. Stat. Phys. 144, 1–22 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  127. Lawler, G.F., Werner, W.: Intersection exponents for planar Brownian motion. Ann. Probab. 27, 1601–1642 (1999)

    MathSciNet  MATH  Google Scholar 

  128. Coniglio, A., Jan, N., Majid, I., Stanley, H.E.: Conformation of a polymer chain at the \(\theta ^{\prime }\) point: connection to the external perimeter of a percolation cluster. Phys. Rev. B 35, 3617–3620 (1987)

    ADS  Google Scholar 

  129. Poole, P.H., Coniglio, A., Jan, N., Stanley, H.E.: Universality classes for the \(\Theta \) and \(\Theta ^{\prime }\) points. Phys. Rev. Lett. 60, 1203 (1988)

    ADS  Google Scholar 

  130. Duplantier, B., Saleur, H.: Duplantier and Saleur reply. Phys. Rev. Lett. 60, 1204 (1988)

    ADS  Google Scholar 

  131. Seno, F., Stella, A., Vanderzande, C.: Universality class of the \(d=2\,\Theta \) point of linear polymers. Phys. Rev. Lett. 61, 1520 (1988)

    ADS  Google Scholar 

  132. Duplantier, B., Saleur, H.: Duplantier and Saleur reply. Phys. Rev. Lett. 61, 1521 (1988)

    ADS  Google Scholar 

  133. Duplantier, B., Saleur, H.: Stability of the polymer \(\Theta \)-point in two dimensions. Phys. Rev. Lett. 62, 1368–1371 (1989)

    ADS  Google Scholar 

  134. Meirovitch, H., Lim, H.A.: \(\Theta \)-point exponents of polymers in \(d=2\). Phys. Rev. Lett. 62, 2640 (1989)

    ADS  Google Scholar 

  135. Duplantier, B., Saleur, H.: Duplantier and Saleur reply. Phys. Rev. Lett. 62, 2641 (1989)

    ADS  Google Scholar 

  136. Seno, F., Stella, A., Vanderzande, C.: Self-avoiding walks in the presence of strongly correlated, annealed vacancies. Phys. Rev. Lett. 65, 2897–2900 (1990)

    ADS  Google Scholar 

  137. Vanderzande, C., Stella, A.L., Seno, F.: Percolation, the special \(\Theta ^{\prime }\) point, and the \(\Theta \)-\(\Theta ^{\prime }\) universality puzzle. Phys. Rev. Lett. 67, 2757–2760 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  138. Foster, D.P., Orlandini, E., Tesi, M.C.: Surface critical exponents for models of polymer collapse and adsorption: the universality of the \(\Theta \) and \(\Theta ^{\prime }\) points. J. Phys. A 25, L1211–L1217 (1992)

    ADS  Google Scholar 

  139. Stella, A.L., Seno, F., Vanderzande, C.: Boundary critical behavior of \(d= 2\) self-avoiding walks on correlated and uncorrelated vacancies. J. Stat. Phys. 73, 21–46 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  140. Warnaar, S.O., Batchelor, M.T., Nienhuis, B.: Critical properties of the Izergin–Korepin and solvable \(O(n)\) models and their related quantum spin chains. J. Phys. A 25, 3077–3095 (1992)

    ADS  MathSciNet  Google Scholar 

  141. Vernier, É., Jacobsen, J.L., Saleur, H.: A new look at the collapse of two-dimensional polymers. J. Stat. Mech. 2015, P09001 (2015)

    MathSciNet  Google Scholar 

  142. Caracciolo, S., Gherardi, M., Papinutto, M., Pelissetto, A.: Geometrical properties of two-dimensional interacting self-avoiding walks at the \(\Theta \)-point. J. Phys. A 44, 115004 (2011). (17pp)

    ADS  MathSciNet  MATH  Google Scholar 

  143. Beaton, N.R., Guttmann, A.J., Jensen, I.: Two-dimensional interacting self-avoiding walks: new estimates for critical temperatures and exponents. arXiv:1911.05852

  144. Saleur, H., Duplantier, B.: Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett. 58, 2325–2328 (1987)

    ADS  MathSciNet  Google Scholar 

  145. Aizenman, M., Duplantier, B., Aharony, A.: Path-crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Lett. 83, 1359–1362 (1999)

    ADS  Google Scholar 

  146. Duplantier, B.: Harmonic measure exponents for two-dimensional percolation. Phys. Rev. Lett. 82, 3940–3943 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  147. Mandelbrot, B.B.: The Fractal Geometry of Nature. WH Freeman and Co, San Francisco (1982)

    MATH  Google Scholar 

  148. Lawler, G.F., Werner, W.: Universality for conformally invariant intersection exponents. J. Eur. Math. Soc. 2, 291–328 (2000)

    MathSciNet  MATH  Google Scholar 

  149. Barber, M.N.: Scaling relations for critical exponents of surface properties of magnets. Phys. Rev. B 8, 407–9 (1973)

    ADS  Google Scholar 

  150. Clisby, N., Conway, A.R., Guttmann, A.J.: Three-dimensional terminally attached self-avoiding walks and bridges. J. Phys. A. 49, 015004 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  151. Seno, F., Stella, A.: Surface exponents for a linear polymer at the \(d=2\,\Theta \) point. Europhys. Lett. 7(7), 605–610 (1988)

    ADS  Google Scholar 

  152. Guttmann, A.J., Janse van Rensburg, E.J., Jensen, I., Whittington, S.G.: Polygons pulled from an adsorbing surface. J. Phys. A 51, 074001 (2018). (30pp)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the hospitality of the Erwin Schrödinger International Institute for Mathematical Physics where this work was initiated, during the programme on Combinatorics, Geometry and Physics in June, 2014. AJG wishes to thank the Australian Research Council for supporting this work through Grant DP120100931, and more recently ACEMS, the ARC Centre of Excellence for Mathematical and Statistical Frontiers. We also wish to warmly thank Hans Werner Diehl for pointing out a number of references relevant to surface transitions, and Emmanuel Guitter for his kind help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Duplantier.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In celebration of the achievements of our dear colleague Joel L. Lebowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duplantier, B., Guttmann, A.J. Statistical Mechanics of Confined Polymer Networks. J Stat Phys 180, 1061–1094 (2020). https://doi.org/10.1007/s10955-020-02584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02584-2

Keywords

Navigation