Skip to main content
Log in

Lifshitz Tails for the Fractional Anderson Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the d-dimensional fractional Anderson model \((-\Delta )^\alpha + V_\omega \) on \(\ell ^2({\mathbb {Z}}^d)\) where \(0<\alpha \leqslant 1\). Here \(-\Delta \) is the negative discrete Laplacian and \(V_\omega \) is the random Anderson potential consisting of iid random variables. We prove that the model exhibits Lifshitz tails at the lower edge of the spectrum with exponent \( d/ (2\alpha )\). To do so, we show among other things that the non-diagonal matrix elements of the negative discrete fractional Laplacian are negative and satisfy the two-sided bound \( \frac{c_{\alpha ,d}}{|n-m|^{d+2\alpha }} \leqslant -(-\Delta )^\alpha (n,m)\leqslant \frac{C_{\alpha ,d}}{|n-m|^{d+2\alpha }}\) for positive constants \(c_{\alpha ,d}\), \(C_{\alpha ,d}\) and all \(n\ne m\in {\mathbb {Z}}^d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Warzel, S.: Random Operators: Disorder Effects on Quantum Spectra and Dynamics. Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence, RI (2015)

    Book  Google Scholar 

  3. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  4. Carmona, R., Masters, W.C., Simon, B.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91, 117–142 (1990)

    Article  MathSciNet  Google Scholar 

  5. Ciaurri, O., Roncal, L., Stinga, P.R., Torrea, J.L., Varona, J.L.: Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330, 688–738 (2018)

    Article  MathSciNet  Google Scholar 

  6. Garofalo, N.: Fractional Thoughts. In New Developments in the Analysis of Nonlocal Operators. Contemp. Math., vol. 723, pp. 1–135. American Mathematical Society, Providence (2019)

    Book  Google Scholar 

  7. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  8. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger (2007)

  9. Han, R.: Shnol’s theorem and the spectrum of long range operators. Proc. Am. Math. Soc. 147, 2887–2897 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jakšić, V., Molchanov, S.: Localization for one-dimensional long range random Hamiltonians. Rev. Math. Phys. 11, 103–135 (1999)

    Article  MathSciNet  Google Scholar 

  11. Kaleta, K., Pietruska-Pałuba, K.: Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpinski gasket. Stoch. Process. Appl. 128, 3897–3939 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kaleta, K., Pietruska-Pałuba, K.: Lifschitz tail for alloy-type models driven by the fractional Laplacian arXiv:1906.03419 (2019)

  13. Kaleta, K., Pietruska-Pałuba, K.: Lifshitz tail for continuous Anderson models driven by Levy operators arXiv:1910.01153 (2019)

  14. Kirsch, W.: An invitation to random Schrödinger operators. Panor. Synth. 25, 1–119 (2008)

    MATH  Google Scholar 

  15. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    Article  MathSciNet  Google Scholar 

  16. Metzler, R., Chechkin, A.V., Klafter, J.: Levy statistics and anomalous transport: Levy flights and subdiffusion. In Computational Complexity , vol. 1–6. Springer, New York, pp. 1724–1745 (2012)

  17. Michelitsch, T.M., Collet, B.A., Riascos, A.P., Nowakowski, A.F., Nicolleau, F.C.G.A.: Fractional random walk lattice dynamics. J. Phys. A 50, 055003, 22 (2017)

  18. Ôkura, H.: On the spectral distributions of certain integro-differential operators with random potential. Osaka J. Math. 16, 633–666 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Padgett, J.L., Kostadinova, E.G., Liaw, C.D., Busse, K., Matthews, L.S., Hyde, T.W.: Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method (Part I), arXiv:1907.10824 (2019)

  20. Pastur, L.A., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    Book  Google Scholar 

  21. Pietruska-Pałuba, K.: The Lifschitz singularity for the density of states on the Sierpiński gasket Probab. Theory Relat. Fields 89, 1–33 (1991)

    Article  Google Scholar 

  22. Riascos, A.P., Michelitsch, T.M., Collet, B.A., Nowakowski, A.F., Nicolleau, F.C.G.A.: Random walks with long-range steps generated by functions of laplacian matrices. J. Stat. Mech. Theory Exp. 2018, 043404 (2018)

    Article  MathSciNet  Google Scholar 

  23. Rojas-Molina, C., Pleschberger, L.: work in progress

  24. Simon, B., Spencer, T.: Trace class perturbations and the absence of absolutely continuous spectra. Commun. Math. Phys. 125, 113–125 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support of the Mathematisches Institut of the Heinrich-Heine-Universität Düsseldorf, where this work was initiated. The authors would like to thank the anonymous referee for carefully reading our manuscript and for the suggestions that led to the improvement of a previous version of Theorem 2.2 , in the form of the lower bound in (2.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gebert.

Additional information

Communicated by Simone Warzel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. A Limit of the Continuous Fractional Laplacian

Appendix A. A Limit of the Continuous Fractional Laplacian

A crucial ingredient to the proof of Theorem 2.2 is understanding the behaviour of the continuous fractional Laplacian \((-\Delta _c)^\alpha \) applied to Schwartz functions for large \(x\in {\mathbb {R}}^d\).

Lemma A.1

Let \({\mathscr {S}}({\mathbb {R}}^d)\) be the set of Schwartz functions, \(\varphi \in {\mathscr {S}}({\mathbb {R}}^d)\), \(0<\alpha <1\) and \((-\Delta _c)^\alpha \) be the continuous fractional negative Laplacian. Then

$$\begin{aligned} \lim _{|x|\rightarrow \infty } |x|^{d+2\alpha } \big ((-\Delta _c)^\alpha \varphi \big )(x) = - K_{d,\alpha } \int _{{\mathbb {R}}^d} \mathrm {d}y\, \varphi (y) \end{aligned}$$
(A.1)

where

$$\begin{aligned} K_{d,\alpha }= \frac{4^\alpha \Gamma (d/2+\alpha )}{\pi ^{d/2} |\Gamma (-\alpha )|}>0. \end{aligned}$$
(A.2)

Proof

Let \(\varphi \in {\mathscr {S}}({\mathbb {R}}^d)\), \(0<\alpha <1\) and \(x\in {\mathbb {R}}^d\). Then the continuous fractional negative Laplacian can be written as

$$\begin{aligned} \big ((-\Delta _c)^\alpha \varphi \big )(x) = K_{d,\alpha } \lim _{b\rightarrow 0} \int _{{\mathbb {R}}^d\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} \end{aligned}$$
(A.3)

with \(K_{d,\alpha }>0\) given above, see [15].

Let \(x\ne 0\) and \(0<b<\frac{|x|}{2}\). We split the integral in (A.3) into two parts as follows:

$$\begin{aligned}&\int _{{\mathbb {R}}^d\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} \nonumber \\&= \int _{B_{\frac{|x|}{2}}(x)\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} + \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }}. \end{aligned}$$
(A.4)

We first consider the second part

$$\begin{aligned} \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} =&\int _{B^c_{\frac{|x|}{2}}(0)} \mathrm {d}y\, \frac{\varphi (x)}{|y|^{d+2\alpha }} - \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y \frac{\varphi (y)}{|x-y|^{d+2\alpha }}. \end{aligned}$$
(A.5)

Since \(\varphi \in {\mathscr {S}}({\mathbb {R}}^d)\) decays faster than any polynomial the above implies

$$\begin{aligned} \lim _{|x|\rightarrow \infty } |x|^{d+2\alpha } \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} = -\lim _{|x|\rightarrow \infty } \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y \frac{|x|^{d+2\alpha } }{|x-y|^{d+2\alpha }} \varphi (y). \end{aligned}$$
(A.6)

One directly sees that for all \(y\in {\mathbb {R}}^d\)

$$\begin{aligned} \lim _{|x|\rightarrow \infty } 1_{B^c_{\frac{|x|}{2}}(x)}(y) \frac{|x|^{d+2\alpha } }{|x-y|^{d+2\alpha }} = 1 \end{aligned}$$
(A.7)

where \(1_S\) stands here for the indicator function of a set \(S\in \text {Borel}({\mathbb {R}}^d)\) and for all \(x,y\in {\mathbb {R}}^d\)

$$\begin{aligned} \Big | 1_{B^c_{\frac{|x|}{2}}(x)}(y) \frac{|x|^{d+2\alpha } }{|x-y|^{d+2\alpha }} \Big | \leqslant 2^{d+2\alpha }. \end{aligned}$$
(A.8)

Hence the dominated convergence theorem implies

$$\begin{aligned} \lim _{|x|\rightarrow \infty } \int _{B^c_{\frac{|x|}{2}}(x)} \mathrm {d}y \frac{|x|^{d+2\alpha } }{|x-y|^{d+2\alpha }} \varphi (y) = \int _{{\mathbb {R}}^d} \mathrm {d}y\, \varphi (y). \end{aligned}$$
(A.9)

For the remaining term in (A.4) we compute for \(0<b<\frac{|x|}{2}\),

$$\begin{aligned} \int _{B_{\frac{|x|}{2}}(x)\setminus B_b(x)} \mathrm {d}y \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }}&=\int _b^{\frac{|x|}{2}} \mathrm {d}r r^{d-1}\int _{\partial B_1(0)} \mathrm {d}S(w) \frac{\big (\varphi (x)-\varphi (x+rw )\big )}{r^{d+2\alpha }}\nonumber \\&=\int _b^{\frac{|x|}{2}} \mathrm {d}r\, \frac{r^{d-1}}{r^{d+2\alpha }} \big (\phi (0)-\phi (r)\big ), \end{aligned}$$
(A.10)

where \(\phi (r) := \int _{\partial B_1(0)} \mathrm {d}S(w)\, \varphi (x+rw )\) and we denote by \(\mathrm {d}S\) integration with respect to surface measure. Then

$$\begin{aligned} \phi '(r)&= \int _{\partial B_1(0)} \mathrm {d}S(w)\, \big ((\nabla \varphi )(x+rw)\big )\cdot w\nonumber \\&=\frac{1}{r^{d-1}} \int _{\partial B_r(x)} \mathrm {d}S(v)\, \big ((\nabla \varphi )(v)\big )\cdot \frac{v-x}{r}\nonumber \\&=\frac{1}{r^{d-1}} \int _{\partial B_r(x)} \mathrm {d}S(v)\, \frac{\partial \varphi }{\partial \nu }(v), \end{aligned}$$
(A.11)

where \(\nu \) is the outer normal vector. Green’s formula implies that

$$\begin{aligned} \int _{\partial B_r(x)} \mathrm {d}S(v)\, \frac{\partial \varphi }{\partial \nu }(v) = \int _{B_r(x)} \mathrm {d}y\, (\Delta \varphi ) (y). \end{aligned}$$
(A.12)

and therefore we obtain

$$\begin{aligned} \int _b^{\frac{|x|}{2}} \mathrm {d}r\, \frac{r^{d-1}}{r^{d+2\alpha }} \big (\phi (0)-\phi (r)\big ) = -\int _b^{\frac{|x|}{2}} \mathrm {d}r\, \frac{1}{r^{2\alpha +1}}\int _0^r \mathrm {d}s \frac{1}{s^{d-1}}\int _{B_s(x)} \mathrm {d}y\, (\Delta \varphi ) (y). \end{aligned}$$
(A.13)

This implies the bound

$$\begin{aligned}&\Big |\int _{B_{\frac{|x|}{2}}(x)\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }}\Big |\nonumber \\&\leqslant C_{d}^{(3)} \sup _{y\in B_{\frac{|x|}{2}}(x)} |(\Delta \varphi )(y)| \int _b^{\frac{|x|}{2}} \mathrm {d}r\, \frac{1}{r^{2\alpha +1}}\int _0^r \mathrm {d}s\, s\nonumber \\&= \frac{C_{d}^{(3)}}{2} \sup _{y\in B_{\frac{|x|}{2}}(x)} |(\Delta \varphi )(y)| \int _b^{\frac{|x|}{2}} \mathrm {d}r\, r^{1-2\alpha } \end{aligned}$$
(A.14)

for some constant \(C_{d}^{(3)}>0\) depending on the dimension only. Therefore, we end up for fixed \(0\ne x\in {\mathbb {R}}^d\) with

$$\begin{aligned} \limsup _{b\rightarrow 0} \Big |\int _{B_{\frac{|x|}{2}}(x)\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }}\Big | \leqslant C_{d}^{(4)} \sup _{y\in B_{\frac{|x|}{2}}(x)} |(\Delta \varphi )(y)| |x|^{2-2\alpha } \end{aligned}$$
(A.15)

for some constant \(C_{d}^{(4)}>0\). Since \(\varphi \in \mathscr {S}({\mathbb {R}}^d)\), we have

$$\begin{aligned} \limsup _{|x|\rightarrow \infty }\ C_{d}^{(4)} \sup _{y\in B_{\frac{|x|}{2}}(x)} |(\Delta \varphi )(y)| |x|^{2-2\alpha } = 0. \end{aligned}$$
(A.16)

Equations (A.4), (A.6), (A.9), (A.15) and (A.16) imply

$$\begin{aligned} \lim _{b\rightarrow 0}\int _{{\mathbb {R}}^d\setminus B_b(x)} \mathrm {d}y\, \frac{\big (\varphi (x)-\varphi (y)\big )}{|x-y|^{d+2\alpha }} = -\int _{{\mathbb {R}}^d} \mathrm {d}y\, \varphi (y) \end{aligned}$$
(A.17)

which inserted in (A.3) gives the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebert, M., Rojas-Molina, C. Lifshitz Tails for the Fractional Anderson Model. J Stat Phys 179, 341–353 (2020). https://doi.org/10.1007/s10955-020-02533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02533-z

Keywords

Navigation