Thermodynamics of a Hierarchical Mixture of Cubes

Abstract

We investigate a toy model for phase transitions in mixtures of incompressible droplets. The model consists of non-overlapping hypercubes in \({\mathbb {Z}}^d\) of sidelengths \(2^j\), \(j\in {\mathbb {N}}_0\). Cubes belong to an admissible set \({\mathbb {B}}\) such that if two cubes overlap, then one is contained in the other. Cubes of sidelength \(2^j\) have activity \(z_j\) and density \(\rho _j\). We prove explicit formulas for the pressure and entropy, prove a van-der-Waals type equation of state, and invert the density-activity relations. In addition we explore phase transitions for parameter-dependent activities \(z_j(\mu ) = \exp ( 2^{dj} \mu - E_j)\). We prove a sufficient criterion for absence of phase transition, show that constant energies \(E_j\equiv \lambda \) lead to a continuous phase transition, and prove a necessary and sufficient condition for the existence of a first-order phase transition.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fisher, M.E.: The theory of condensation and the critical point. Phys. Phys. Fiz. 3(5), 255–283 (1967)

    MathSciNet  Google Scholar 

  2. 2.

    Stillinger, F.H.: Rigorous basis of the Frenkel–Band theory of association equilibrium. J. Chem. Phys. 38(7), 1486–1494 (1963)

    ADS  Article  Google Scholar 

  3. 3.

    Sator, N.: Clusters in simple fluids. Phys. Rep. 376(1), 1–39 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Fisher, M.E., Felderhof, B.U.: Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics. Ann. Phys. 58(1), 176–216 (1970)

    ADS  Article  Google Scholar 

  5. 5.

    Fisher, M.E.: On discontinuity of the pressure. Commun. Math. Phys. 26, 6–14 (1972)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Israel, R.B.: Convexity in the theory of lattice gases. Princeton University Press, Princeton, NJ, 1979, Princeton Series in Physics, With an introduction by A. S. Wightman (1979)

  7. 7.

    Jansen, S., König, W.: Ideal mixture approximation of cluster size distributions at low density. J. Stat. Phys. 147(5), 963–980 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Jansen, S., König, W., Metzger, B.: Large deviations for cluster size distributions in a continuous classical many-body system. Ann. Appl. Probab. 25(2), 930–973 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jansen, S., Tate, S.J., Tsagkarogiannis, D., Ueltschi, D.: Multispecies virial expansions. Commun. Math. Phys. 330(2), 801–817 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Jansen, S., Tsagkarogiannis, D.: Cluster expansions with renormalized activities and applications to colloids. Ann. Henri Poincaré 21, 45–79 (2020). https://doi.org/10.1007/s00023-019-00868-2

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Jansen, S., Kuna, T., Tsagkarogiannis, D.: Virial inversion and density functionals. arXiv:1906.02322 (2019)

  12. 12.

    Jansen, S.: Cluster and virial expansions for the multi-species Tonks gas. J. Stat. Phys. 161(5), 1299–1323 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12(2), 91–107 (1969)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Brydges, D.C.: Lectures on the Renormalisation Group. Statistical Mechanics. IAS/Park City Mathematics Series, vol. 16, pp. 7–93. American Mathematical Society, Providence, RI (2009)

    Google Scholar 

  15. 15.

    Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys. 22(2), 133–161 (1971)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Mandelbrot, B.B.: The Fractal Geometry of Nature. Schriftenreihe für den Referenten [Series for the Referee]. W. H. Freeman and Co., San Francisco (1982)

    Google Scholar 

  17. 17.

    Chayes, J.T., Chayes, L., Durrett, R.: Connectivity properties of Mandelbrot’s percolation process. Probab. Theory Relat. Fields 77(3), 307–324 (1988)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Georgii, H.-O., Häggström, O., Maes, C.: The Random Geometry of Equilibrium Phases. Phase Transitions and Critical Phenomena, vol. 18, pp. 1–142. Academic Press, San Diego (2001)

    Google Scholar 

  19. 19.

    Faris, W.G.: Combinatorics and cluster expansions. Probab. Surv. 7, 157–206 (2010)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

I thank Serena Cenatiempo, Diana Conache, Dimitrios Tsagkarogiannis, and Steffen Winter for stimulating discussions, and David Brydges for pointing out the possible usefulness of renormalization for treating mixtures of objects of different sizes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabine Jansen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Alessandro Giuliani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansen, S. Thermodynamics of a Hierarchical Mixture of Cubes. J Stat Phys 179, 309–340 (2020). https://doi.org/10.1007/s10955-020-02531-1

Download citation

Keywords

  • Incompressible droplets
  • Condensation
  • Excluded volume
  • Polymer partition function
  • Hierarchical model

Mathematics Subject Classification

  • 82B20
  • 82B26