Skip to main content
Log in

Statistical Mechanics of Freely Fluctuating Two-Dimensional Elastic Crystals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, some facts related Joel L. Lebowitz are mentioned. In addition, some of the known theory concerning the statistical physics of freely fluctuating two-dimensional crystals subject to a non-linear elastic hamiltonian is described. Particular topics that are discussed include the existence of two-dimensional crystals in relation to the Hohenberg–Mermin–Wagner theorem, the crumpling transition for freely suspended crystalline membranes and the renormalization of elastic moduli. Although much of what is known has been uncovered since the mid-80s, the topic has become of interest once again due to the discovery of graphene and other two-dimensional crystals. The field is vast so it is the aim of this note to describe some of its fundamental properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amorim, B., et al.: Thermodynamics of quantum crystalline membranes. Phys. Rev. B 89, 22 (2014)

    Google Scholar 

  2. Aronovitz, J.A., Lubensky, T.C.: Fluctuations of solid membranes. Phys. Rev. Lett. 60, 25 (1988)

    Google Scholar 

  3. Aronovitz, J., Golubovic, L., Lubensky, T.C.: Fluctuations and lower critical dimensions of crystalline membranes. J. Phys. 50, 6 (1989)

    Google Scholar 

  4. Bernard, E.P., Krauth, W.: Two-step melting in two dimensions: first-order liquid-hexatic transition. Phys. Rev. Lett. 107, 15 (2011)

    Google Scholar 

  5. Bladon, P., Frenkel, D.: Dislocation unbinding in dense two-dimensional crystals. Phys. Rev. Lett. 74, 13 (1995)

    Google Scholar 

  6. Bowick, M.J., et al.: Non-Hookean statistical mechanics of clamped graphene ribbons. Phys. Rev. B 95, 10 (2017)

    Google Scholar 

  7. Burmistrov, I.S., et al.: Quantum elasticity of graphene: thermal expansion coefficient and specific heat. Phys. Rev. B 94, 19 (2016)

    Google Scholar 

  8. Cao, Y., et al.: DeGennes unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 7699 (2018)

    Google Scholar 

  9. Chernov, N.I., et al.: Derivation of Ohm’s law in a deterministic mechanical model. Phys. Rev. Lett. 70, 15 (1993)

    Google Scholar 

  10. Coquand, O.: Spontaneous symmetry breaking and the flat phase of crystalline membranes. Phys. Rev. B 100, 12 (2019)

    Google Scholar 

  11. Coquand, O., Mouhanna, D.: Flat phase of quantum polymerized membranes. Phys. Rev. E 94, 3 (2016)

    Google Scholar 

  12. David, F., Guitter, E.: Crumpling transition in elastic membranes: renormalization group treatment. EPL Europhys. Lett. 5, 8 (1988)

    Google Scholar 

  13. Dobrushin, R.L., Shlosman, S.B.: Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. Math. Phys. 42, 1 (1975)

    ADS  MathSciNet  Google Scholar 

  14. Friedli, S., Velenik, Y.: Statistical Nechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  15. Ganz, E., et al.: The initial stages of melting of graphene between 4000 K and 6000 K. Phys. Chem. Chem. Phys. 19, 5 (2017)

    Google Scholar 

  16. Geim, A.K., Novoselov, K.S.: The Rise of Graphene. Nanoscience and Technology: A Collection of Reviews from Nature Journals. World Scientific, Singapore (2010)

    Google Scholar 

  17. Guitter, E., et al.: Thermodynamical behavior of polymerized membranes. J. Phys. 50, 14 (1989)

    Google Scholar 

  18. Guitter, E., et al.: Crumpling and buckling transitions in polymerized membranes. Phys. Rev. Lett. 61, 26 (1988)

    Google Scholar 

  19. Guitter, E., Kardar, M.: Tethering, crumpling, and melting transitions in hexatic membranes. EPL Europhys. Lett. 13, 5 (1990)

    Google Scholar 

  20. Halperin, B.I., Nelson, D.R.: Theory of two-dimensional melting. Phys. Rev. Lett. 41, 2 (1978)

    MathSciNet  Google Scholar 

  21. Halperin, B.I.: On the Hohenberg-Mermin-Wagner theorem and its limitations. J. Stat. Phys. 175, 3–4 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 2 (1967)

    Google Scholar 

  23. Kantor, Y., Nelson, D.R.: Crumpling transition in polymerized membranes. Phys. Rev. Lett. 58, 26 (1987)

    Google Scholar 

  24. Kantor, Y., Nelson, D.R.: Phase transitions in flexible polymeric surfaces. Phys. Rev. A 36, 8 (1987)

    Google Scholar 

  25. Kardar, M.: Statistical Physics of Fields. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  26. Kats, E.I., Lebedev, V.V.: Asymptotic freedom at zero temperature in free-standing crystalline membranes. Phys. Rev. B 89, 12 (2014)

    Google Scholar 

  27. Katsnelson, M.I.: Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  28. Khanin, K.M., et al.: Self-avoiding walks in five or more dimensions: polymer expansion approach. Russ. Math. Surv. 50, 2 (1995)

    Google Scholar 

  29. Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 7 (1973)

    Google Scholar 

  30. Kosterlitz, J.M.: Kosterlitz-Thouless physics: a review of key issues. Rep. Prog. Phys. 79, 2 (2016)

    Google Scholar 

  31. Košmrlj, A., Nelson, D.R.: Mechanical properties of warped membranes. Phys. Rev. E 88, 1 (2013)

    Google Scholar 

  32. Košmrlj, A., Nelson, D.R.: Response of thermalized ribbons to pulling and bending. Phys. Rev. B 93, 12 (2016)

    Google Scholar 

  33. Landau, L.D., Lifshitz, E.M.: Elasticity Theory. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  34. Pierre, L.D., Radzihovsky, L.: Anomalous elasticity, fluctuations and disorder in elastic membranes. Ann. Phys. 392, 340–410 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 5887 (2008)

    Google Scholar 

  36. Levy, N., et al.: Strain-induced pseudo-magnetic fields greaterthan 300 tesla in graphene nanobubbles. Science 329, 5991 (2010)

    Google Scholar 

  37. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 22 (1966)

    Google Scholar 

  38. Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 1 (1968)

    Google Scholar 

  39. McBryan, O.A., Spencer, T.: On the decay of correlations in SO (n)-symmetric ferromagnets. Commun. Math. Phys. 53, 3 (1977)

    MathSciNet  Google Scholar 

  40. Nelson, D.R., Halperin, B.I.: Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 5 (1979)

    Google Scholar 

  41. Nelson, D.R., Peliti, L.: Fluctuations in membranes with crystalline and hexatic order. J. Phys. 48, 7 (1987)

    Google Scholar 

  42. Nelson, D.R., Piran, T., Weinberg, S. (eds.): Statistical Mechanics of Membranes and Surfaces. World Scientific, Singapore (2004)

    Google Scholar 

  43. Nicholl, R.J.T., et al.: The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat. Commun. 6, 8789 (2015)

    ADS  Google Scholar 

  44. Nicholl, R.J.T., et al.: Hidden area and mechanical nonlinearities in freestanding graphene. Phys. Rev. Lett. 118, 26 (2017)

    Google Scholar 

  45. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)

    Google Scholar 

  46. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 7065 (2005)

    Google Scholar 

  47. Novoselov, K.S., et al.: Room-temperature quantum Hall effect in graphene. Science 315, 5817 (2007)

    Google Scholar 

  48. Pereira, V.M., Castro Neto, A.H., Peres, N.M.R.: Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 4 (2009)

    Google Scholar 

  49. Radzihovsky, L., Nelson, D.R.: Statistical mechanics of randomly polymerized membranes. Phys. Rev. A 44, 6 (1991)

    Google Scholar 

  50. Radzihovsky, L., Toner, J.: A new phase of tethered membranes: tubules. Phys. Rev. Lett. 75, 26 (1995)

    Google Scholar 

  51. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 2 (1988)

    Google Scholar 

  52. Toner, J.: Elastic anisotropies and long-ranged interactions in solid membranes. Phys. Rev. Lett. 62, 8 (1989)

    ADS  Google Scholar 

  53. Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 2 (1974)

    Google Scholar 

  54. Young, A.P.: Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 4 (1979)

    Google Scholar 

Download references

Acknowledgements

The authors thank Andrej Košmrlj for many useful discussions and reading the manuscript in preparation. We also would like to thank Siddhartha Sarkar for reading the manuscript in preparation. The first author would like to acknowledge the support of the NSF DMR-1752100 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. H. Bahri.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahri, M.E.H., Sinai, Y. Statistical Mechanics of Freely Fluctuating Two-Dimensional Elastic Crystals. J Stat Phys 180, 739–748 (2020). https://doi.org/10.1007/s10955-020-02512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02512-4

Keywords

Navigation