Skip to main content
Log in

A System of Interacting Neurons with Short Term Synaptic Facilitation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we present a simple microscopic stochastic model describing short term plasticity within a large homogeneous network of interacting neurons. Each neuron is represented by its membrane potential and by the residual calcium concentration within the cell at a given time. Neurons spike at a rate depending on their membrane potential. When spiking, the residual calcium concentration of the spiking neuron increases by one unit. Moreover, an additional amount of potential is given to all other neurons in the system. This amount depends linearly on the current residual calcium concentration within the cell of the spiking neuron. In between successive spikes, the potentials and the residual calcium concentrations of each neuron decrease at a constant rate. We show that in this framework, short time memory can be described as the tendency of the system to keep track of an initial stimulus by staying within a certain region of the space of configurations during a short but macroscopic amount of time before finally being kicked out of this region and relaxing to equilibrium. The main technical tool is a rigorous justification of the passage to a large population limit system and a thorough study of the limit equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barak, O., Tsodyks, M.: Persistent activity in neural networks with dynamic synapses. PLoS Comput. Biol. 3(2) (2007). https://doi.org/10.1371/journal.pcbi.0030035

    Article  ADS  MathSciNet  Google Scholar 

  2. Blackman, D., Vigna, S.: Scrambled Linear Pseudorandom Number Generators. CoRR, arXiv:1805.01407 (2018)

  3. Brillinger, D., Segundo, J.P.: Empirical examination of the threshold model of neuron firing. Biol. Cybern. 35, 213–220 (1979)

    Article  Google Scholar 

  4. Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Mod. Methods Appl. Sci. 25(14), 2669–2719 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chornoboy, E., Schramm, L., Karr, A.: Maximum likelihood identification of neural point process systems. Biol. Cybern. 59, 265–275 (1988)

    Article  MathSciNet  Google Scholar 

  6. Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stoch. Proc. Appl. 127, 1840–1869 (2017)

    Article  MathSciNet  Google Scholar 

  7. Duarte, A., Ost, G.: A model for neuronal activity in the absence of external stimuli. Markov Process. Relat. Fields 22, 37–52 (2016)

    MATH  Google Scholar 

  8. Dzhaparidze, K., van Zanten, J.H.: On Bernstein-type inequalities for martingales. Stoch. Process. Appl. 93(1), 109–117 (2001)

    Article  MathSciNet  Google Scholar 

  9. Hansen, N., Reynaud-Bouret, P., Rivoirard, V.: Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21(1), 83–143 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North Holland, Amsterdam (1989)

    MATH  Google Scholar 

  11. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  12. Kistler, W.M., van Hemmen, L.: Short-term synaptic plasticity and network behavior. Neural Comput. 11, 1579–1594 (1999)

    Article  Google Scholar 

  13. Markram, H., Tsodyks, M.: Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382(6594), 807–810 (1996)

    Article  ADS  Google Scholar 

  14. Mongillo, G., Barak, O., Tsodyks, M.: Synaptic theory of working memory. Science 319, 1543 (2008)

    Article  ADS  Google Scholar 

  15. Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory IT–27, 23–31 (1981)

    Article  Google Scholar 

  16. Reynaud-Bouret, P., Rivoirard, V., Grammont, F., Tuleau-Malot, C.: Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. J. Math. Neurosci. (JMN) 4, 1–41 (2014)

    Article  MathSciNet  Google Scholar 

  17. Schmutz, V., Gerstner, W., Schwaiger, T.: Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity. arXiv:1812.09414 (2018)

  18. Seeholzer, A., Deger, M., Gerstner, W.: Stability of working memory in continuous attractor networks under the control of short-term plasticity. bioRxiv 424515 (2018). https://doi.org/10.1101/424515

  19. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lecture Notes in Math. Springer, Berlin, pp. 165–251 (1991)

    Google Scholar 

  20. Tsodyks, M., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. 94(2), 719–723 (1997)

    Article  ADS  Google Scholar 

  21. Tsodyks, M., Pawelzik, K., Markram, H.: Neural networks with dynamic synapses. Neural Comput. 10(4), 821–835 (1998)

    Article  Google Scholar 

  22. Tsodyks, M., Wu, S.: Short-term synaptic plasticity. Scholarpedia 8(10), 3153 (2013)

    Article  ADS  Google Scholar 

  23. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for useful remarks and careful reading. AG and EL thank the Gran Sasso Science Institute (GSSI) for hospitality and support. This research is part of USP project Mathematics, computation, language and the brain and of FAPESP project Research, Innovation and Dissemination Center for Neuromathematics (Grant 2013/07699-0). AG is partially supported by CNPq fellowship (Grant 311 719/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galves.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galves, A., Löcherbach, E., Pouzat, C. et al. A System of Interacting Neurons with Short Term Synaptic Facilitation. J Stat Phys 178, 869–892 (2020). https://doi.org/10.1007/s10955-019-02467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02467-1

Keywords

Mathematics Subject Classification

Navigation