Skip to main content
Log in

Sturmian Ground States in Classical Lattice–Gas Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct for the first time examples of non-frustrated, two-body, infinite-range, one-dimensional classical lattice–gas models without periodic ground-state configurations. Ground-state configurations of our models are Sturmian sequences defined by irrational rotations on the circle. We present minimal sets of forbidden patterns which define Sturmian sequences in a unique way. Our interactions assign positive energies to forbidden patterns and are equal to zero otherwise. We illustrate our construction by the well-known example of the Fibonacci sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliste-Prieto, J., Coronel, D., Gambaudo, J.-M.: Rapid convergence to frequency for substitution tilings of the plane. Commun. Math. Phys. 306, 365–380 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Aubry, S.: The new concept of transitions by breaking of analyticity in a crystallographic model. In: Bishop, A.R. (ed.) Solitons and Condensed Matter Physics. Springer-Verlag, Berlin, Heidelberg (1978)

    Google Scholar 

  4. Aubry, S.: Complete devil’s staircase in the one-dimensional lattice gas. J. Phys. Lett. 44, L247–L250 (1983)

    Google Scholar 

  5. Aubry, S.: Exact models with a complete Devil’s staircase. J. Phys. C 16, 2497–2508 (1983)

    ADS  Google Scholar 

  6. Aubry, S.: Devil’s staircase and order without periodicity in classical condensed matter. J. Phys. 44, 147–162 (1983)

    MathSciNet  Google Scholar 

  7. Aubry, S.: Weakly periodic structures and example. J. Phys. C3–50, 97–106 (1989)

    MathSciNet  Google Scholar 

  8. Baake, M., Grimm, U.: Aperiodic Order, Vol 1: A Mathematical Invitation. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  9. Bak, P., Bruinsma, R.: One-dimensional Ising model and the complete Devil’s staircase. Phys. Rev. Lett. 49, 151–249 (1982)

    MathSciNet  Google Scholar 

  10. Berger, R.: The Undecidability of the Domino Problem. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  11. Berthé, V., Cecchi Bernales, P.: Balancedness and coboundaries in symbolic systems. Theor. Comput. Sci. 777, 93–110 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Bruin, H., Leplaideur, R.: Renormalization, thermodynamic formalism and quasicrystals in subshifts. Commun. Math. Phys. 321, 209–247 (2013)

    ADS  MATH  Google Scholar 

  13. Bruin, H., Leplaideur, R.: Renormalization, freezing phase transitions and fibonacci quasicrystals. Ann. Sci. Éc. Norm. Supér. (4) 48(3), 739–763 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Bundaru, M., Angelescu, N., Nenciu, G.: On the ground state of Ising chains with finite range interactions. Phys. Lett. 43A, 5–6 (1973)

    ADS  Google Scholar 

  15. Daniëls, H.A.M., van Enter, A.C.D.: Differentianbility of the pressure in lattice systems. Commun. Math. Phys. 71, 65–76 (1980)

    ADS  MATH  Google Scholar 

  16. van Enter, A.C.D., Miȩkisz, J.: Breaking of periodicity at positive temperatures. Commun. Math. Phys. 134, 647–651 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  17. van Enter, A.C.D., Miȩkisz, J.: How should one define a (weak) crystal? J. Stat. Phys. 66, 1147–1153 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  18. van Enter, A.C.D., Miȩkisz, J., Zahradník, M.: Nonperiodic long-range order for fast-decaying interactions at positive temperatures. J. Stat. Phys. 90, 1441–1447 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  19. van Enter, A.C.D., Zegarliński, B.: Non-periodic long-range order for one-dimensional pair interactions. J. Phys. A 30, 501–505 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Springer Lecture Notes in Mathematics 1794. Springer, Berlin (2002)

    MATH  Google Scholar 

  21. Gardner, C., Miȩkisz, J., Radin, C., van Enter, A.: Fractal symmetry in an Ising model. J. Phys. A. 22, L1019–L1023 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. American Mathematical Society, Providence (1955)

    MATH  Google Scholar 

  23. Gottschalk, W.H., Hedlund, G.A.: A characterization of the Morse minimal set. Proc. Am. Math. Soc. 15, 70–74 (1964)

    MathSciNet  MATH  Google Scholar 

  24. Grunbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York (1987)

    MATH  Google Scholar 

  25. Hlawka, E.: Discrepancy and uniform distribution of sequences. Compos. Math. 16, 83–91 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  27. Hubbard, J.: Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TNCNQ) salts. Phys. Rev. B 17, 494–505 (1978)

    ADS  Google Scholar 

  28. Jȩdrzejewski, J., Miȩkisz, J.: Devil’s staircase for non-convex interactions. Europhys. Lett. 50, 307–311 (2000)

    ADS  Google Scholar 

  29. Jȩdrzejewski, J., Miȩkisz, J.: Ground states of lattice gases with “almost” convex repulsive interactions. J. Stat. Phys. 98, 589–620 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Keane, M.: Generalized Morse sequences. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 10, 335–353 (1968)

    MathSciNet  MATH  Google Scholar 

  31. Kesten, H.: On a conjecture of Erdös and Szüsz related to uniform distribution mod 1. Acta Arith. 12, 193–212 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Lemberger, P.: Segregation in the Falicov–Kimball model. J. Phys. A 25, 715–733 (1992)

    ADS  MathSciNet  Google Scholar 

  33. Lunnon, W.F., Pleasants, P.A.B.: Characterization of two-distance sequences. J. Aust. Math. Soc. 53, 198–218 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Miȩkisz, J.: Many phases in systems without periodic ground states. Commun. Math. Phys. 107, 577–586 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Miȩkisz, J.: Stable quasicrystalline ground states. J. Stat. Phys. 88, 691–711 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Miȩkisz, J.: Ultimate frustration in classical lattice–gas models. J. Stat. Phys. 90, 285–300 (1998)

    ADS  MathSciNet  Google Scholar 

  37. Miȩkisz, J.: Classical lattice–gas models of quasicrystals. J. Stat. Phys. 97, 835–850 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Miȩkisz, J., Radin, C.: The Third Law of thermodynamics. Mod. Phys. Lett. B 1, 61–65 (1987)

    ADS  Google Scholar 

  39. Miȩkisz, J., Radin, C.: Why solids are not really crystalline. Phys. Rev. B 39, 1950–1952 (1989)

    ADS  MathSciNet  Google Scholar 

  40. Miȩkisz, J., Radin, C.: The unstable chemical structure of quasicrystalline alloys. Phys. Lett. 119A, 133–134 (1986)

    ADS  Google Scholar 

  41. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)

    MathSciNet  MATH  Google Scholar 

  42. Peyriere, J.: Frequency of patterns in certain graphs and in Penrose tilings. J. Phys. Colloq. 47(C), 41–62 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Radin, C.: Crystals and quasicrystals: a lattice gas model. Phys. Lett. l14A, 381–383 (1986)

    ADS  MathSciNet  Google Scholar 

  44. Radin, C.: Disordered ground states of classical lattice models. Rev. Math. Phys. 3, 125–135 (1991)

    MathSciNet  MATH  Google Scholar 

  45. Radin, C., Schulman, L.: Periodicity of classical ground states. Phys. Rev. Lett. 51, 621–622 (1983)

    ADS  MathSciNet  Google Scholar 

  46. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)

    ADS  Google Scholar 

Download references

Acknowledgements

JM and AvE would like to thank the National Science Centre (Poland) for financial support under Grant No. 2016/22/M/ST1/00536. HK gratefully acknowledges the support of OeAD grant number PL03/2017. JM thanks Karol Penson for introducing to him a wonderful world of the On-Line Encyclopedia of Integer Sequences and Marek Biskup for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Miȩkisz.

Additional information

Communicated by Bruno Nachtergaele.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Enter, A., Koivusalo, H. & Miȩkisz, J. Sturmian Ground States in Classical Lattice–Gas Models. J Stat Phys 178, 832–844 (2020). https://doi.org/10.1007/s10955-019-02464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02464-4

Keywords

Navigation