Skip to main content
Log in

Boolean Percolation on Doubling Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the discrete Boolean model of percolation on weighted graphs satisfying a doubling metric condition. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolation, provided that the parameter of the underlying point process is small enough. We exhibit three families of interesting graphs where the main result of this work holds. Finally, we give sufficient conditions for ergodicity of the discrete Boolean model of percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Assouad, P.: Étude d’une dimension métrique liée à la possibilité de plongements dans \({\bf R}^{n}\). C. R. Acad. Sci. Paris Sér. A-B 288 15, 1379–1401 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Benjamini, I., Schramm, O.: Recurrence of Distributional Limits of Finite Planar Graphs, pp. 533–545. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9675-6_15

    Book  MATH  Google Scholar 

  3. Breuillard, E.: Geometry of locally compact groups of polynomial growth and shape of large balls. arXiv preprint arXiv:0704.0095 (2007)

  4. Chan, H.T., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 762–771. Society for Industrial and Applied Mathematics (2005)

  5. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  6. Coniglio, A., Nappi, C.R., Peruggi, F., Russo, L.: Percolation and phase transitions in the ising model. Commun. Math. Phys. 51(3), 315–323 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  7. Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. 1, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  8. de Bruijn, N.: Algebraic theory of Penrose’s non-periodic tilings of the plane. Indag. Math. (Proc.) 84(1), 39–52 (1981). https://doi.org/10.1016/1385-7258(81)90016-0

    Article  MATH  Google Scholar 

  9. Dolye, P.G.: Application of Rayleigh’s short-cut method to Pólya’s recurrence problem. Ph.D. thesis, Dartmouth College (1982)

  10. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Association of America, Washington DC (1984)

    Book  Google Scholar 

  11. Galves, A., Garcia, N., Löcherbach, E., Orlandi, E., et al.: Kalikow-type decomposition for multicolor infinite range particle systems. Ann. Appl. Probab. 23(4), 1629–1659 (2013)

    Article  MathSciNet  Google Scholar 

  12. Georgii, H.O., Häggström, O., Maes, C.: The Random Geometry of Equilibrium Phases; Phase Transitions and Critical Phenomena, vol. 18. Academic Press, London (2001)

    Google Scholar 

  13. Gilbert, E.N.: Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543 (1961)

    Article  MathSciNet  Google Scholar 

  14. Gouéré, J.B.: Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36, 1209–1220 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Mathématiques de l’IHÉS 53(1), 53–78 (1981)

    Article  MathSciNet  Google Scholar 

  16. Imrich, W., Seifter, N.: A survey on graphs with polynomial growth. Discret. Math. 95(1), 101–117 (1991)

    Article  MathSciNet  Google Scholar 

  17. Kendall, W.S.: Notes on perfect simulation. Markov Chain Monte Carlo 7, 93–146 (2005)

    Article  MathSciNet  Google Scholar 

  18. Krön, B.: Growth of self-similar graphs. J. Graph Theory 45(3), 224–239 (2004)

    Article  MathSciNet  Google Scholar 

  19. LaFontaine, J., Katz, M., Gromov, M., Bates, S.M., Pansu, P., Pansu, P., Semmes, S.: Metric Structures for Riemannian and non-Riemannian Spaces. Springer, New York (2007)

    Google Scholar 

  20. Lehrbäck, J., Tuominen, H.: A note on the dimensions of assouad and aikawa. J. Math. Soc. Jpn. 65(2), 343–356 (2013). https://doi.org/10.2969/jmsj/06520343

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyons, R., Peres, Y.: Probability on Trees and Networks, vol. 42. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  22. Mackay, J.M., Tyson, J.T.: Conformal Dimension: Theory and Application, vol. 54. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  23. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  24. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  25. Pansu, P.: Métriques de carnot-carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math 129(1), 1–60 (1989)

    Article  MathSciNet  Google Scholar 

  26. Pechersky, E., Yambartsev, A.: Percolation properties of the non-ideal gas. J. Stat. Phys. 137(3), 501–520 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Propp, J.G., Wilson, D.B.: Exact sampling with coupled markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1–2), 223–252 (1996)

    Article  MathSciNet  Google Scholar 

  28. Raghunathan, M.: Discrete Subgroups of Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, New York (1972)

    Book  Google Scholar 

  29. Seifter, N., Woess, W.: Approximating graphs with polynomial growth. Glasg. Math. J. 42(1), 1–8 (2000)

    Article  MathSciNet  Google Scholar 

  30. Stoyan, D., Mecke, K.: The boolean model: from matheron till today. Space, Structure and Randomness, pp. 151–181. Springer, New York (2005)

    Chapter  Google Scholar 

  31. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of computing, pp. 281–290. ACM (2004)

  32. Telcs, A.: Volume and time doubling of graphs and random walks: the strongly recurrent case. Commun. Pure Appl. Math. 54(8), 975–1018 (2001)

    Article  MathSciNet  Google Scholar 

  33. Telcs, A.: The art of random walks. 1885. Springer, New York (2006)

    Book  Google Scholar 

  34. Wolf, J.A., et al.: Growth of finitely generated solvable groups and curvature of riemannian manifolds. J. Differ. Geom. 2(4), 421–446 (1968)

    Article  MathSciNet  Google Scholar 

  35. Zuev, S.A., Sidorenko, A.F.: Continuous models of percolation theory. Theor. Math. Phys. 62(1), 51–58 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian F. Coletti.

Additional information

Communicated by Ierene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by FAPESP Grant 2017/10555 and the third author was partially supported by FAPESP Grants 09/52379-8 and 2012/24086-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coletti, C.F., Miranda, D. & Grynberg, S.P. Boolean Percolation on Doubling Graphs. J Stat Phys 178, 814–831 (2020). https://doi.org/10.1007/s10955-019-02462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02462-6

Keywords

Mathematics Subject Classification

Navigation