Interface Fluctuations in Non Equilibrium Stationary States: The SOS Approximation


We study the 2d stationary fluctuations of the interface in the SOS approximation of the non equilibrium stationary state found in De Masi et al. (J Stat Phys 175:203–221, 2019). We prove that the interface fluctuations are of order \(N^{1/4}\), N the size of the system. We also prove that the scaling limit is a stationary Ornstein–Uhlenbeck process.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctiation theory. Rev. Mod. Phys. 87, 593 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    Bernardin, C., Olla, S.: Fourier law for a microscopic model of heat conduction. J. Stat. Phys. 121, 271–289 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  4. 4.

    De Masi, A., Olla, S., Presutti, E.: A note on Fick’s law with phase transitions. J. Stat. Phys. 175, 203–21 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Derrida, B., Lebowitz, J.L., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107(3/4), 599–634 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Gallavotti, G.: The phase separation line in the two-dimensional Ising model. Commun. Math. Phys. 27, 103–136 (1972)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model Journ. Stat. Phys. 27, 65–74 (1982)

    ADS  Article  Google Scholar 

  9. 9.

    Ioffe, D., Shlosman, S., Velenik, Y.: An invariance principle to Ferrari–Spohn diffusions. Commun. Math. Phys. 336, 905–932 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Hanche-Olsen, Harald, Holden, Helge: The Kolmogorov–Riesz compactness theorem. Exp. Math. 28(4), 385–394 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Ann. Math. Soc. Transl. 26, 128 (1950)

    MathSciNet  Google Scholar 

  12. 12.

    Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

Download references


We thank S. Shlosman for helpful discussions. A.DM thanks very warm hospitality at the University of Paris-Dauphine where part of this work was performed. This work was partially supported by ANR-15-CE40-0020-01 grant LSD.

Author information



Corresponding author

Correspondence to Anna De Masi.

Additional information

Dedicated to Joel for his important contributions to the theory of phase transition and interfaces.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Aizenman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Masi, A., Merola, I. & Olla, S. Interface Fluctuations in Non Equilibrium Stationary States: The SOS Approximation. J Stat Phys 180, 414–426 (2020).

Download citation


  • Non equilibrium stationary states
  • Interfaces
  • SOS model