Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Large Deviations and One-Sided Scaling Limit of Randomized Multicolor Box-Ball System

  • 46 Accesses

Abstract

The basic \(\kappa \)-color box-ball (BBS) system is an integrable cellular automaton on one dimensional lattice whose local states take \(\{0,1,\ldots ,\kappa \}\) with 0 regarded as an empty box. The time evolution is defined by a combinatorial rule of quantum group theoretical origin, and the complete set of conserved quantities is given by a \(\kappa \)-tuple of Young diagrams. In the randomized BBS, a probability distribution on \(\{0,1,\ldots ,\kappa \}\) to independently fill the consecutive n sites in the initial state induces a highly nontrivial probability measure on the\(\kappa \)-tuple of those invariant Young diagrams. In a recent work Kuniba et al. (Nucl Phys B 937:240–271, 2018), their large n ‘equilibrium shape’ has been determined in terms of Schur polynomials by a Markov chain method and also by a very different approach of thermodynamic Bethe ansatz (TBA). In this paper, we establish a large deviations principle for the row lengths of the invariant Young diagrams. As a corollary, they are shown to converge almost surely to the equilibrium shape at an exponential rate. We also refine the TBA analysis and obtain the exact scaling form of the vacancy, the row length and the column multiplicity, which exhibit nontrivial factorization in a one-parameter specialization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The update map \({\mathcal {T}}_{c}^{(a)}\) may not preserve number of balls when \(a>1\), as seen in Fig. 2. In order to make it a time evolution that preserves number of balls, we need to introduce ‘barriers’ at the right tail of the state space. See [19, Sect. 2.2].

  2. 2.

    Here and in what follows we will often write \(i \in \{0,1,\ldots , \kappa \}\) to mean and vice versa.

  3. 3.

    The usage of the symbols \(\Rightarrow \) and \(\Downarrow \) here is not standard.

  4. 4.

    It was invented in a very different context in 1980’s and is later found [21] to linearize the BBS dynamics.

References

  1. 1.

    Croydon, D.A., Kato, T., Sasada, M., Tsujimoto, S.: Dynamics of the box-ball system with random initial conditions via pitman’s transformation. arXiv:1806.02147 (2018)

  2. 2.

    Dedecker, J., Rio, E.: On the functional central limit theorem for stationary processes. Ann. l’IHP Probab. Stat. 36, 1–34 (2000)

  3. 3.

    Durrett, R.: Probability: Theory and Examples, 4th edn, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)

  4. 4.

    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, vol. 38. Springer, Berlin (2009)

  5. 5.

    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1957)

  6. 6.

    Feller, W.: An Introduction to Probability and Its Applications, vol. II. Wiley, New York (1971)

  7. 7.

    Ferrari, P.A., Gabrielli, D.: BBS invariant measures with independent soliton components. arXiv:1812.02437 (2018)

  8. 8.

    Fulmek, M., Kleber, M.: Bijective proofs for Schur function identities which imply Dodgson’s condensation formula and Plücker relations. Electron J Comb 8(1), 16 (2001)

  9. 9.

    Ferrari, P.A., Nguyen, C., Rolla, L., Wang, M.: Soliton decomposition of the box-ball system. arXiv:1806.02798 (2018)

  10. 10.

    Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

  11. 11.

    Fukuda, K., Okado, M., Yamada, Y.: Energy functions in box ball systems. Int. J. Mod. Phys. A 15(09), 1379–1392 (2000)

  12. 12.

    Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., Tokihiro, T.: The \(A_{M}^{(1)}\) automata related to crystals of symmetric tensors. J. Math. Phys. 42(1), 274–308 (2001)

  13. 13.

    Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on Fermionic formula, recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998). Contemp. Math. 248, 243–291 (1998)

  14. 14.

    Hatayama, G., Kuniba, A., Takagi, T.: Factorization of combinatorial R matrices and associated cellular automata. J. Stat. Phys. 102(3–4), 843–863 (2001)

  15. 15.

    Hormander, L.: An Introduction to Complex Analysis in Several Variables, vol. 7. Elsevier, Ansterdam (1973)

  16. 16.

    Inoue, R., Kuniba, A., Takagi, T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001 (2012)

  17. 17.

    Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

  18. 18.

    Kerov, S., Kirillov, A., Reshetikhin, N.: Combinatorics, Bethe ansatz, and representations of the symmetric group. J. Math. Sci. 41(2), 916–924 (1988)

  19. 19.

    Kuniba, A., Lyu, H., Okado, M.: Randomized box-ball systems, limit shape of rigged configurations and thermodynamic Bethe ansatz. Nucl. Phys. B 937, 240–271 (2018)

  20. 20.

    Kuniba, A., Nakanishi, T., Suzuki, J.: \(T\)-systems and \(Y\)-systems in integrable systems. J. Phys. A 44(10), 103001 (2011)

  21. 21.

    Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection. Nucl. Phys. B 740(3), 299–327 (2006)

  22. 22.

    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, New York (2002)

  23. 23.

    Levine, L., Lyu, H., Pike, J.: Double jump phase transition in a random soliton cellular automaton. arXiv:1706.05621 (2017)

  24. 24.

    Lam, T., Pylyavskyy, P., Sakamoto, R.: Rigged configurations and cylindric loop schur functions. arXiv:1410.4455 (2014)

  25. 25.

    Lyu, H., Sivakoff, D.: Persistence of sums of correlated increments and clustering in cellular automata. Stoch. Process. Appl. 129, 1132–1152 (2018)

  26. 26.

    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Berlin (2012)

  27. 27.

    Nakayashiki, A., Yamada, Y.: Kostka polynomials and energy functions in solvable lattice models. Sel. Math. 3(4), 547–599 (1997)

  28. 28.

    Okado, M.: \(X=M\) conjecture, Combinatorial aspect of integrable systems. Math. Soc. Jpn. Mem. 17, 43–73 (2007)

  29. 29.

    Sakamoto, R.: Kirillov–Schilling–Shimozono bijection as energy functions of crystals. Int. Math. Res. Not. 2009(4), 579–614 (2009)

  30. 30.

    Shimozono, M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebr. Comb. 15(2), 151–187 (2002)

  31. 31.

    Takahashi, D.: On some soliton systems defined by using boxes and balls. In: 1993 International Symposium on Nonlinear Theory and Its Applications, (Hawaii; 1993), pp. 555–558 (1993)

  32. 32.

    Takahashi, D., Matsukidaira, J.: Box and ball system with a carrier and ultradiscrete modified KdV equation. J. Phys. A 30(21), L733 (1997)

  33. 33.

    Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59(10), 3514–3519 (1990)

  34. 34.

    Zeilberger, D.: Andre’s reflection proof generalized to the many-candidate Ballot problem. Discret. Math. 44(3), 325–326 (1983)

Download references

Acknowledgements

The authors appreciate valuable conversations with Frank Aurzada, Mikhail Lifshits, Masato Okado, and Makiko Sasada. Atsuo Kuniba is supported by Grants-in-Aid for Scientific Research No. 18H01141 from JSPS.

Author information

Correspondence to Hanbaek Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Hal Tasaki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuniba, A., Lyu, H. Large Deviations and One-Sided Scaling Limit of Randomized Multicolor Box-Ball System. J Stat Phys 178, 38–74 (2020). https://doi.org/10.1007/s10955-019-02417-x

Download citation

Keywords

  • Solitons
  • Cellular automata
  • Integrable systems
  • Scaling limit
  • Thermodynamic Bethe ansatz