Skip to main content
Log in

Self-Averaging of Perturbation Hamiltonian Density in Perturbed Spin Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is shown that the variance of a perturbation Hamiltonian density vanishes in the infinite-volume limit of perturbed spin systems with quenched disorder. This is proven in a simpler way and under less assumptions than before. A corollary of this theorem indicates the impossibility of non-spontaneous replica symmetry-breaking in disordered spin systems. The commutativity between the infinite-volume limit and the switched-off limit of a replica symmetry-breaking perturbation implies that the variance of the spin overlap vanishes in the replica symmetric Gibbs state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Contucci, P.: On the stability of quenched state in mean-field spin glass models. J. Stat. Phys. 92, 765–783 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  2. Brankov, J.G., Tonchev, N.S.: Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the approximating Hamiltonian method. Cond. Matt. Phys. 14, 13003-1–13003-17 (2011)

    Google Scholar 

  3. Chatterjee, S.: Absence of replica symmetry-breaking in the random field Ising model. Commun. Math. Phys. 337, 93–102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chatterjee,S.: The Ghirlanda-Guerra identities without averaging. preprint, arXiv:0911.4520 (2009)

  5. Contucci, P., Giardinà, C.: Spin-glass stochastic stability: a rigorous proof. Ann Henri Poincare 6, 915–923 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Contucci, P., Giardinà, C.: The Ghirlanda-Guerra identities. J. Stat. Phys. 126, 917–931 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Contucci, P., Lebowitz, J.L.: Correlation inequalities for quantum spin systems with quenched centered disorder. J. Math. Phys. 51, 023302-1–6 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Crawford, N.: Thermodynamics and universality for mean field quantum spin glasses. Commun. Math. Phys. 274, 821–839 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transition in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  10. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5, 965–974 (1975)

    Article  ADS  Google Scholar 

  11. Ghirlanda, S., Guerra, F.: General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31, 9149–9155 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Goldschmidt, C., Ueltschi, D., Windridge, P.: Quantum Heisenberg models and their probabilistic representations Entropy and the quantum II. Contemp. Math. 562, 177–224 (2011)

    Article  Google Scholar 

  13. Griffiths, R.B.: Spontaneous magnetization in idealized ferromagnets. Phys. Rev. 152, 240–246 (1964)

    Article  ADS  Google Scholar 

  14. Griffiths, R.B.: A proof that the free energy of spin system is extensive. J. Math. Phys. 5, 1215–1222 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  15. Guerra, F.: The phenomenon of spontaneous replica symmetry-breaking in complex statistical mechanics systems. J. Phys. 442, 012013 (2013)

    Google Scholar 

  16. Harris, A.B.: Bounds for certain thermodynamic averages. J. Math. Phys. 8, 1044–1045 (1967)

    Article  ADS  Google Scholar 

  17. Itoi, C.: General properties of overlap operators in disordered quantum spin systems. J. Stat. Phys. 163, 1339–1349 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Itoi, C.: Zero variance of perturbation Hamiltonian density in perturbed spin systems. J. Stat. Phys. 176, 556–573 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Khanin, K.M., Sinai, Y.G.: Existence of free energy for models with Long-range random Hamiltonians. J. Stat. Phys. 20, 573–584 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  20. Koma, T., Tasaki, H.: Symmetry breaking in Heisenberg antiferromagnets. Commun. Math. Phys. 158, 198–214 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ledrappier, F.: Pressure and variational principle for random Ising model. Commun. Math. Phys. 56, 297–302 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mukaida, H.: Non-differentiability of the effective potential and the replica symmetry-breaking in the random energy model. J. Phys. A 49(45002), 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Panchenko, D.: The Ghirlanda-Guerra identities for mixed \(p\)-spin glass model. Compt. Read. Math. 348, 189–192 (2010)

    Article  Google Scholar 

  24. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13, L-115 (1980)

    Article  ADS  Google Scholar 

  25. Pastur, L.A., Figotin, A.L.: Theory of disordered spin systems. Theor. Math. Phys. 35, 403–414 (1978)

    Article  MathSciNet  Google Scholar 

  26. Seiler, E., Simon, B.: Nelson’s symmetry and all that in Yukawa and \((\phi ^4)_3\) theories. Ann. Phys. 97, 470–518 (1976)

    Article  ADS  Google Scholar 

  27. Sherrington, S., Kirkpatrick, S.: Solvable model of spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  ADS  Google Scholar 

  28. Talagrand, M.: The Parisi formula. Ann. Math. 163, 221–263 (2006)

    Article  MathSciNet  Google Scholar 

  29. Talagrand, M.: Mean Field Models for Spin Glasses. Springer, Berlin (2011)

    Book  Google Scholar 

  30. van Enter, A.C.D., Griffiths, R.B.: The order parameter in a spin glass. Commun. Math. Phys. 90, 319–327 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. Vuillermot, P.A.: Thermodynamics of quenched random spin systems, and application to the problem of phase transitions in magnetic (spin) glasses. J. Phys. A 10, 1319–1333 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zegarlinski, B.: Interactions and pressure functionals for disordered lattice systems. Commun. Math. Phys. 139, 305–339 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Itoi.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoi, C. Self-Averaging of Perturbation Hamiltonian Density in Perturbed Spin Systems. J Stat Phys 177, 1063–1076 (2019). https://doi.org/10.1007/s10955-019-02408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02408-y

Keywords

Navigation