Skip to main content
Log in

Decidability of Irreducible Tree Shifts of Finite Type

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We reveal an algorithm for determining the complete prefix code irreducibility (CPC-irreducibility) of dyadic trees labeled by a finite alphabet. By introducing an extended directed graph representation of tree shift of finite type (TSFT), we show that the CPC-irreducibility of TSFTs is related to the connectivity of its graph representation, which is a similar result to one-dimensional shifts of finite type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aubrun, N., Barbieri, S., Moutot, E.: The domino problem is undecidable on surface groups. arXiv:1811.08420 (2018)

  2. Aubrun, N., Béal, M.-P.: Tree-shifts of finite type. Theor. Comput. Sci. 459, 16–25 (2012)

    Article  MathSciNet  Google Scholar 

  3. Aubrun, N., Béal, M.-P.: Sofic tree-shifts. Theory Comput. Syst. 53, 621–644 (2013)

    Article  MathSciNet  Google Scholar 

  4. Ban, J.-C., Chang, C.-H.: Mixing properties of tree-shifts. J. Math. Phys. 58, 112702 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ban, J.-C., Chang, C.-H.: Tree-shifts: irreducibility, mixing, and chaos of tree-shifts. Trans. Am. Math. Soc. 369, 8389–8407 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ban, J.-C., Hu, W.-G., Lin, S.-S., Lin, Y.-H.: Verification of mixing properties in two-dimensional shifts of finite type. arXiv:1112.2471 (2015)

  7. Béal, M.-P., Fiorenzi, F., Mignosi, F.: Minimal forbidden patterns of multi-dimensional shifts. Int. J. Algebra Comput. 15, 73–93 (2005)

    Article  MathSciNet  Google Scholar 

  8. Berger, R.: The Undecidability of the Domino Problem. American Mathematical Society, Providence (1966)

    Book  Google Scholar 

  9. Boyle, M., Pavlov, R., Schraudner, M.: Multidimensional sofic shifts without separation and their factors. Trans. Am. Math. Soc. 362, 4617–4653 (2010)

    Article  MathSciNet  Google Scholar 

  10. Briceño, R.: The topological strong spatial mixing property and new conditions for pressure approximation. Ergod. Theory Dyn. Syst. (2016) to appear

  11. Ceccherini-Silberstein, T., Coornaert, M., Fiorenzi, F., S̆unić, Z.: Cellular automata between sofic tree shifts. Theor. Comput. Sci. 506, 79–101 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chandgotia, N., Marcus, B.: Mixing properties for hom-shifts and the distance between walks on associated graphs. Pac. J. Math. 294, 41–69 (2018)

    Article  MathSciNet  Google Scholar 

  13. Coven, E., Johnson, A., Jonoska, N., Madden, K.: The symbolic dynamics of multidimensional tiling systems. Ergod. Theory Dyn. Syst. 23, 447–460 (2003)

    Article  MathSciNet  Google Scholar 

  14. Culik II, K.: An aperiodic set of 13 Wang tiles. Discret. Math. 160, 245–251 (1996)

    Article  MathSciNet  Google Scholar 

  15. Culik II K., Kari, J 1995) An aperiodic set of Wang cubes. J. Univ. Comput. Sci. 1, 675–686

  16. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City, CA (1987)

    Google Scholar 

  17. Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Sib. Math. J. 13, 319–321 (1972)

    Article  Google Scholar 

  18. Jeandel, E., Vanier, P.: Hardness of conjugacy, embedding and factorization of multidimensional subshifts. J. Comput. Syst. Sci. 81, 1648–1664 (2015)

    Article  MathSciNet  Google Scholar 

  19. Johnson, A., Madden, K.: The decomposition theorem for two-dimensional shifts of finite type. Proc. Am. Math. Soc. 127, 1533–1543 (1999)

    Article  MathSciNet  Google Scholar 

  20. Johnson, A., Madden, K.: Factoring higher-dimensional shifts of finite type onto the full shift. Ergod. Theory Dyn. Syst. 25, 811–822 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kari, J.: A small aperiodic set of Wang tiles. Discret. Math. 160, 259–264 (1996)

    Article  MathSciNet  Google Scholar 

  22. Kitchens, B.: Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  23. Lightwood, S.: Morphisms from non-periodic \(\mathbb{Z}^2\)-subshifts I: constructing embeddings from homomorphisms. Ergod. Theory Dyn. Syst. 23, 587–609 (2003)

    Article  MathSciNet  Google Scholar 

  24. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  25. Lind, D., Schmidt, K.: Symbolic and Algebraic Dynamical Systems. Handbook of Dynamical Systems, vol. 1A, pp. 765–812. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

  26. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  27. Markley, N.G., Paul, M.E.: Maximal measures and entropy for \(Z^{\nu }\) subshift of finite type. Class. Mech. Dyn. Syst. 70, 135–157 (1979)

    MathSciNet  Google Scholar 

  28. Markley, N.G., Paul, M.E.: Matrix subshifts for \(Z^{\nu }\) symbolic dynamics. Proc. Lond. Math. Soc. 43, 251–272 (1981)

    Article  MathSciNet  Google Scholar 

  29. Mcgoff, K., Pavlov, R.: Factoring onto topologically strong spatial mixing \(\mathbb{Z}^{2}\) subshifts. arXiv:1611.03570 (2016)

  30. Pavlov, R., Schraudner, M.: Classification of sofic projective subdynamics of multidimensional shifts of finite type. Trans. Am. Math. Soc. 367, 3371–3421 (2015)

    Article  MathSciNet  Google Scholar 

  31. Piantadosi, S.T.: Symbolic dynamics on free groups. Discret. Contin. Dyn. Syst. 20, 725–738 (2008)

    Article  MathSciNet  Google Scholar 

  32. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  33. Schmidt, K.: Multi-dimensional Symbolic Dynamical Systems, Codes, Systems and Graphical Models, pp. 67–82. Springer, New York (2001)

    Book  Google Scholar 

  34. Schraudner, M.: Projectional entropy and the electrical wire shift. Discret. Contin. Dyn. Syst. 26, 333–346 (2010)

    Article  MathSciNet  Google Scholar 

  35. Sharma, P., Kumar, D.: Matrix characterization of multidimensional subshifts of finite type. arXiv:1603.00754 (2016)

  36. Ward, T.: Automorphisms of \(\mathbb{Z}^{d}\)-subshifts of finite type. Indag. Math. (N.S.) 5, 495–504 (1994)

    Article  MathSciNet  Google Scholar 

  37. Williams, R.F.: Classification of subshifts of finite type, Ann. of Math. 98, 120–153 (1973), Errata, Annals of Math. 99, 380-381 (1974)

Download references

Acknowledgements

The authors want to express their gratitude to the anonymous referees for their valuable comments and suggestions, which significantly improve the quality of this paper and make the paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hung Chang.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the Ministry of Science and Technology, ROC (Contract No MOST 107-2115-M-259 -001 -MY2 and 107-2115-M-390 -002 -MY2).

Appendix: The Complexity of Algorithm

Appendix: The Complexity of Algorithm

In this appendix, we present the pseudo code of our algorithm and estimate the complexity of the algorithm.

The index start from 0 for the following pseudocode.

figure a

Suppose there are k convergent-edges, m divergent-edges, and n vertices in the extended directed graph. It is seen that the complexity of “isReachable” part is at most \(O(m+n+k)\). Since we have m divergent-edges, the complexity of our algorithm is at most

$$\begin{aligned} O((m+n+k) \cdot (m+(m-1)+\cdots +1))=O\left( (m+n+k) \cdot \dfrac{m(m-1)}{2}\right) = O(m^3). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, JC., Chang, CH., Huang, NZ. et al. Decidability of Irreducible Tree Shifts of Finite Type. J Stat Phys 177, 1043–1062 (2019). https://doi.org/10.1007/s10955-019-02407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02407-z

Keywords

Navigation