Skip to main content
Log in

Interpreting Traffic on a Highway with On/Off Ramps in the Light of TASEP

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We raise the question whether a simple model for traffic, generic but based on microscopic rules, can provide an additional angle for interpreting flow through a road system. Using the totally simple exclusion process (TASEP) on a road segment with ramps, we show that measuring the flow directly at the road junctions may be a useful setup. We show that the presence of junctions affects the characterisation of traffic, suggesting that interpretations in terms of a 2-phase or a 3-phase description may be complementary, rather than contradictory. We furthermore argue that hysteresis-like features can appear in a system with junctions, which is intriguing as the TASEP dynamics as such do not lead to hysteresis. We discuss our findings in the light of boundary-driven phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knight, F.H.: Cost of production and price over long and short periods. J. Political Econ. 29(4), 304–335 (1921)

    Google Scholar 

  2. Knight, F.H.: Some fallacies in the interpretation of social cost. Q. J. Econ. 38(4), 582–606 (1924)

    Google Scholar 

  3. Greenshields, B.D., Thompson, J.T., Dickinson, H.C., Swinton, R.S.: The photographic method of studying traffic behavior. In: Highway Research Board Proceedings (Vol. 13) (1934)

  4. Kerner, B.S.: Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Lighthill, M.J., Whitham, J.B.: On kinematic waves. I: flow movement in long rivers. 11: a theory of traffic flow on long crowded roads. Proc. R. Soc. A229, 281–345 (1955)

    ADS  MATH  Google Scholar 

  6. Richards, P.I.: Shockwaves on the highway. Oper. Res. 4, 42–51 (1956)

    MATH  Google Scholar 

  7. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B 28(4), 269–287 (1994)

    Google Scholar 

  8. Smulders, S.: Control of freeway traffic flow by variable speed signs. Transp. Res. Part B 24(2), 111–132 (1990)

    Google Scholar 

  9. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B 29(4), 277–286 (1995)

    Google Scholar 

  10. Pipes, L.A.: Car following models and the fundamental diagram of road traffic. Transp. Res. 1(1), 21–29 (1967)

    Google Scholar 

  11. Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6(2), 165–184 (1958)

    MathSciNet  Google Scholar 

  12. Chandler, R.E., Herman, R., Montroll, E.W.: Car following theory of steady-state traffic flow. Oper. Res. 7(4), 499–505 (1959)

    MathSciNet  Google Scholar 

  13. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)

    Google Scholar 

  14. Hoogendoorn, S.P., Bovy, P.H.: State-of-the-art of vehicular traffic flow modelling. J. Syst. Control Eng. 215(4), 283–303 (2001)

    Google Scholar 

  15. Wilson, R.E.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. Lond. A 366(1872), 2017–2032 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysisa mathematical perspective. Transp. Plan. Technol. 34(1), 3–18 (2011)

    Google Scholar 

  17. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological study of dynamical model of traffic flow. J. Phy. I 5(11), 1389–1399 (1995)

    ADS  Google Scholar 

  18. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58(5), 5429 (1998)

    ADS  Google Scholar 

  19. Popkov, V., Santen, L., Schadschneider, A., Schütz, G.M.: Empirical evidence for a boundary-induced nonequilibrium phase transition. J. Phys. A 34(6), L45 (2001)

    ADS  MATH  Google Scholar 

  20. Jiang, R., Wu, Q.S., Wang, B.H.: Cellular automata model simulating traffic interactions between on-ramp and main road. Phys. Rev. E 66(3), 036104 (2002)

    ADS  Google Scholar 

  21. Buckley, D.J.: A semi-poisson model of traffic flow. Transp. Sci. 2(2), 107–133 (1968)

    Google Scholar 

  22. Branston, D.: Link capacity functions: a review. Transp. Res. 10(4), 223–236 (1976)

    Google Scholar 

  23. Treiterer, J., Myers, J.: The hysteresis phenomenon in traffic flow. Transp. Traffic Theory 6, 13–38 (1974)

    Google Scholar 

  24. Gayah, V.V., Daganzo, C.F.: Clockwise hysteresis loops in the macroscopic fundamental diagram: an effect of network instability. Transp. Res. Part B 45(4), 643–655 (2011)

    Google Scholar 

  25. Blase, J.H.: Hysteresis and catastrophe theory: empirical identification in transportation modelling. Environ. Plan. A 11(6), 675–688 (1979)

    Google Scholar 

  26. Kerner, B.S., Klenov, S.L.: Deterministic microscopic three-phase traffic flow models. J. Phys. A 39(8), 1775 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kerner, B.S.: The physics of traffic. Phys. World Mag. 12, 25–30 (1999)

    Google Scholar 

  28. Kerner, B.S.: Congested traffic flow: observations and theory. Transp. Res. Rec. 1678, 160–167 (1999)

    Google Scholar 

  29. Kerner, B.S.: The Physics of Traffic. Springer, Berlin, New York (2004)

    Google Scholar 

  30. Kouhi Esfahani, R., Shahbazi, F., Akbarzadeh, M.: Three-phase classification of an uninterrupted traffic flow: a k-means clustering study. Transportmetrica B 7(1), 546–558 (2018)

    Google Scholar 

  31. Wagner, P., Nagel, K.: Comparing traffic flow models with different number of ’phases’. Eur. Phys. J. B 63, 315–320 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Schönhof, M., Helbing, D.: Criticism of three-phase traffic theory. Transp. Res. Part B 43(7), 784–797 (2009)

    Google Scholar 

  33. Krauss, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Phys. Rev. E 55(5), 5597–5602 (1997)

    ADS  Google Scholar 

  34. Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Metastable states in cellular automata for traffic flow. Eur. Phys. J. B 5(3), 793–800 (1998)

    ADS  Google Scholar 

  35. Deng, H., Zhang, H.M.: Positive-negative loops (clockwise or unti-clockwise): on traffic relaxation, anticipation, and hysteresis. Transp. Res. Rec. 2491, 90–97 (2015)

    Google Scholar 

  36. Saifuzzaman, M., Zheng, Z., Haque, M.M., Washington, S.: Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level. Transp. Res. Part B 105, 523–538 (2017)

    Google Scholar 

  37. Huang, D.W.: Ramp Effects in Asymmetric Simple Exclusion Processes. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow05, pp. 509–514. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  38. Popkov, V., Hager, J., Krug, J., Schütz, G.M.: Minimal current phase and boundary layers in driven diffusive systems. Phys. Rev. E 63, 056110 (2001)

    ADS  Google Scholar 

  39. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Google Scholar 

  40. Embley, B., Parmeggiani, A., Kern, N.: Understanding totally asymmetric simple-exclusion-process transport on networks: generic analysis via effective rates and explicit vertices. Phys. Rev. E 80(4), 041128 (2009)

    ADS  Google Scholar 

  41. Neri, I., Kern, N., Parmeggiani, A.: Totally asymmetric simple exclusion process on networks. Phys. Rev. Lett. 107(6), 068702 (2011)

    ADS  Google Scholar 

  42. Schütz, G., Domany, E.: Phase transitions in an exactly solube one-dimensiaonal exclusion process. J. Stat. Phys. 72(1/2), 277 (1993)

    ADS  MATH  Google Scholar 

  43. Hilhorst, H.J., Appert-Rolland, C.: A multi-lane TASEP model for crossing pedestrian traffic flows. J. Stat. Mech. 2012(06), P06009 (2012)

    Google Scholar 

  44. Appert-Rolland, C., Cividini, J., Hilhorst, H.J.: Intersection of two TASEP traffic lanes with frozen shuffle update. J. Stat. Mech. 2011(10), P10014 (2011)

    Google Scholar 

  45. Schadschneider, A.: Statistical physics of traffic flow. Physica A 285(1), 101–120 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Srinivasa, S., Haenggi, M.: The TASEP: A Statistical Mechanics Tool to Study the Performance of Wireless Line Networks. In ICCCN (pp. 1-6) (2010, August)

  47. Chou, T., Mallick, K., Zia, R.K.P.: Synchronous totally asymmetric exclusion process with a dial-input-single-output junction. J. Res. Phys. 35(1), 75 (2011)

    Google Scholar 

  48. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: comparison of update procedures. J. Stat. Phys. 92(1–2), 151–194 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Appert-Rolland, C., Ebbinghaus, M., Santen, L.: Intracellular transport driven by cytoskeletal motors: general mechanisms and defects. Phys. Rep. 593, 159 (2015)

    MathSciNet  Google Scholar 

  50. Appert-Rolland, C., Cividini, J., Hilhorst, H.J.: Random shuffle update for an asymmetric exclusion process on a ring. J. Stat. Mech. 7(07), 07009 (2011)

    Google Scholar 

  51. Kerner, B.S.: Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  52. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Empirical test for cellular automaton models of traffic flow. Phys. Rev. E 70(1), 016115 (2004)

    ADS  Google Scholar 

  53. Xiao, S., Wu, S., Zheng, D.: Synchronous totally asymmetric exclusion process with a dial-input-single-output junction. J. Res. Phys. 35(1), 75 (2011)

    Google Scholar 

  54. Brankov, J. G., Pesheva, N. C., Bunzarova, N.Z.: One-Dimensional Traffic Flow Models: Theory and Computer Simulations. arXiv preprint arXiv:0803.2625 (2008)

  55. Raguin, A., Parmeggiani, A., Kern, N.: Role of network junctions for the totally asymmetric simple exclusion process. Phys. Rev. E 88(4), 042104 (2013)

    ADS  Google Scholar 

  56. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A 31(33), 6911 (1998)

    ADS  MATH  Google Scholar 

  57. Kraub, S., Wagner, P., Gawon, C.: Metastable states in a microscopic model of traffic flow. Phys. Rev. E 55(5), 5597 (1997)

    ADS  Google Scholar 

  58. Buisson, C., Ladier, C.: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transp. Res. Rec. 2124, 127–136 (2009)

    Google Scholar 

  59. Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. Part B 45(3), 605–617 (2011)

    Google Scholar 

  60. Chen, D., Laval, J.A., Ahn, S., Zheng, Z.: Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective. Transp. Res. Part B 46(10), 1440–1453 (2012)

    Google Scholar 

  61. Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81(14), 3042 (1998)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Meisam Akbarzadeh and Prof. Farhad Shahbazi for encouraging this collaboration. R. K.-I. wishes to thank Isfahan municipality for financial support of her PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kern.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Phase Diagram in the \(\tilde{\rho }-\beta \) Plane for the Symmetric Case (\(\alpha _1=\alpha _2=\alpha \))

We begin by establishing/recalling the conditions for all possible phases:

a. Phase 2LD:LD We get four conditions from requiring segments A (i.e. A\(_1\) and A\(_2\)) as well as segment C to be in the LD state:

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} \alpha \le 1-\tilde{\rho }&{}\qquad &{}(A.ii) &{} \alpha \le 1/2 \\ (C.i) &{} \tilde{\rho }\le \beta &{}\qquad &{}(C.ii) &{} \tilde{\rho }\le 1/2 \end{array} \end{aligned}$$
(A1)

From which we can delimit the zone in the \(\tilde{\rho }-\beta \)-plane in which this phase may arise, if it exists.

figure a

In addition, we still need to impose the condition of current conservation at the junction, which leads to

$$\begin{aligned} 2 \times \alpha (1-\alpha ) = \tilde{\rho }(1-\tilde{\rho }) \end{aligned}$$
(A2)

and therefore the phase 2LD:LD requires that

$$\begin{aligned} \tilde{\rho }_{2LD:LD} = \frac{1}{2} \, \left( 1 - \sqrt{1 - 8 \alpha (1-\alpha )}\right) \qquad \left( \alpha \le \frac{1}{2} \, \left( 1-\sqrt{\frac{1}{2}}\right) \simeq 0.146\right) \end{aligned}$$
(A3)

where we have picked the negative branch, to ensure compatibility with condition C.ii, and restricted the values of \(\alpha \) to guarantee that the expression under the square root remain positive.

b. Phase 2LD:HD The four conditions from the segments are

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} \alpha \le 1-\tilde{\rho }&{}\qquad &{}(A.ii) &{} \alpha \le 1/2 \\ (C.i) &{} \beta \le \tilde{\rho }&{}\qquad &{}(C.ii) &{} \beta \le 1/2 \end{array} \end{aligned}$$
(A4)
figure b

Within this zone, current conservation imposes

$$\begin{aligned} 2 \times \alpha (1-\alpha ) = \beta (1-\beta ) \end{aligned}$$
(A5)

and therefore the phase 2LD:HD is restricted to a particular value of \(\beta = \beta _{2LD:HD}\).

$$\begin{aligned} \beta _{2LD:HD} = \frac{1}{2} \, \left( 1 - \sqrt{1 - 8 \alpha (1-\alpha )}\right) \qquad \left( \alpha \le \frac{1}{2} \, \left( 1-\sqrt{\frac{1}{2}}\right) \simeq 0.146\right) \end{aligned}$$
(A6)

where we have picked the negative branch, to ensure compatibility with condition C.ii, and the condition on \(\alpha \) ensures that there is a real solution to the square root.

c. Phase 2HD:LD This phase does not exist. The four conditions from the segments are

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} 1-\tilde{\rho }\le \alpha &{}\qquad &{}(A.ii) &{} 1-\tilde{\rho }\le 1/2 \\ (C.i) &{} \tilde{\rho }\le \beta &{}\qquad &{}(C.ii) &{} \tilde{\rho }\le 1/2 \end{array} \end{aligned}$$
(A7)

Conditions A.ii and C.ii only allow for \(\tilde{\rho }=1/2\), a special case, and from conditions A.i and C.i we require both \(\alpha \ge 1/2\) and \(\beta >1/2\).

However, current conservation furthermore requires

$$\begin{aligned} 2 \times \tilde{\rho }(1-\tilde{\rho }) = \tilde{\rho }(1-\tilde{\rho }) \end{aligned}$$
(A8)

which is impossible (except for the trivial cases \(\tilde{\rho }=0\) or \(\tilde{\rho }=1\)). We must therefore exclude this phase.

d. Phase 2HD:MC The segment conditions are

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} 1-\tilde{\rho }\le \alpha &{}\qquad &{}(A.ii) &{}1-\tilde{\rho }<1/2 \\ (C.i) &{} \tilde{\rho }\ge 1/2 &{}\qquad &{}(C.ii) &{} \beta \ge 1/2 \end{array} \end{aligned}$$
(A9)

Again this establishes a zone where this phase may arise, but current conservation furthermore yields

$$\begin{aligned} 2 \times \tilde{\rho }(1-\tilde{\rho }) = 1/4 \end{aligned}$$
(A10)

which translates to

$$\begin{aligned} \tilde{\rho }_{2HD:MC} = \frac{1}{2} \, \left( 1 + \sqrt{\frac{1}{2}}\right) \approx 0.85 \end{aligned}$$
(A11)

where the negative branch is excluded due to condition C.ii.

figure c
figure d

In this case we thus have two scenarios, due to this condition on top of condition A.i:

  • if \(\alpha \ge 1-\tilde{\rho }_{2HD:MC} = \frac{1}{2} \, \left( 1-\sqrt{\frac{1}{2}}\right) \approx 0.15\), then the solution \(\tilde{\rho }= \tilde{\rho }_{2HD:MC}\) is valid anywhere in the above zone of the \(\tilde{\rho }-\beta \)-plane.

  • in the opposite case, however, this condition is mutually exclusive with condition A.i, and therefore there is no phase 2LD : MC.

e. Phase 2LD:MC The conditions on segments A and C are

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} \alpha \le 1-\tilde{\rho }&{}\qquad &{}(A.ii) &{}\alpha <1/2 \\ (C.i) &{} \tilde{\rho }\ge 1/2 &{}\qquad &{}(C.ii) &{} \beta \ge 1/2 \end{array} \end{aligned}$$
(A12)

from which we can identify a rectangle in the phase plane, which is at this stage bounded by \(\tilde{\rho }< 1-\alpha \). However, current conservation shows that only one value is admissible for \(\alpha \), as

$$\begin{aligned} 2 \, \alpha (1-\alpha ) = 1/4 \end{aligned}$$
(A13)

requires to have

$$\begin{aligned} \alpha = \frac{1}{2} \, \left( 1 - \sqrt{\frac{1}{2}}\right) \end{aligned}$$
(A14)

where the positive branch has been discarded due to condition A.ii. Thus the 2LD:MC phase arises only at this particular value for \(\alpha \), but it covers the entire rectangle:

figure e

f. Phase 2HD:HD The segment conditions are

$$\begin{aligned} \begin{array}{lllll} (A.i) &{} 1-\tilde{\rho }\le \alpha &{}\qquad &{}(A.ii) &{}1-\tilde{\rho }<1/2 \\ (C.i) &{} \beta < \tilde{\rho }&{}\qquad &{}(C.ii) &{} \beta \le 1/2 \end{array} \end{aligned}$$
(A15)

This again identifies a zone in the phase plane, which is again dependent on the value of \(\alpha \).

Requiring current conservation

$$\begin{aligned} 2 \times \tilde{\rho }(1-\tilde{\rho }) = \beta \, (1-\beta ) \end{aligned}$$
(A16)

links \(\beta \) to t\(\tilde{\rho }\) as

$$\begin{aligned} \beta _{2HD:HD} = \frac{1}{2} \, \left( 1 - \sqrt{1 - 8 \tilde{\rho }(1-\tilde{\rho })}\right) \end{aligned}$$
(A17)

choosing again the negative branch, in order to accommodate condition C.ii. Note that this only has real solutions in the required zone if

$$\begin{aligned} \tilde{\rho }\ge \tilde{\rho }_{2HD:HD}^* = \frac{1}{2} \, \left( 1+\sqrt{\frac{1}{2}}\right) \end{aligned}$$
(A18)
figure f
figure g

Here we must distinguish two cases:

  • for large \(\alpha \), \(1-\alpha \ge \tilde{\rho }_{2HD:HD}^*\), the entire branch of the parabola \(\tilde{\rho }_{2HD:HD}^*(\beta )\) is accessible

  • for \(\alpha \) below this value only the lower part of this branch, corresponding to small values of \(\beta \), constitute a solution, the remainder being excluded by condition A.i

g. Overall phase diagram in the \((\tilde{\rho },\beta )\) plane as  \(\alpha \) is varied We can thus recapitulate the location of the phases as \(\alpha \) is progressively increased:

figure h
figure i
figure j
figure k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouhi Esfahani, R., Kern, N. Interpreting Traffic on a Highway with On/Off Ramps in the Light of TASEP. J Stat Phys 177, 588–607 (2019). https://doi.org/10.1007/s10955-019-02380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02380-7

Keywords

Navigation