Skip to main content
Log in

Kinetic Description of a Rayleigh Gas with Annihilation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript


In this paper, we consider the dynamics of a tagged point particle in a gas of moving hard-spheres that are non-interacting among each other. This model is known as the ideal Rayleigh gas. We add to this model the possibility of annihilation (ideal Rayleigh gas with annihilation), requiring that each obstacle is either annihilating or elastic, which determines whether the tagged particle is elastically reflected or removed from the system. We provide a rigorous derivation of a linear Boltzmann equation with annihilation from this particle model in the Boltzmann–Grad limit. Moreover, we give explicit estimates for the error in the kinetic limit by estimating the contributions of the configurations which prevent the Markovianity. The estimates show that the system can be approximated by the Boltzmann equation on an algebraically long time scale in the scaling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  1. Alexander, R.: Time evolution for infinitely many hard-spheres. Commun. Math. Phys. 49(3), 217–232 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alonso, R. J., Bagland, V., Lods, B.: Convergence to self-similarity for ballistic annihilation dynamics. arXiv:1804.06192 (2018)

  3. Arlotti, L., Lods, B.: Integral representation of the linear Boltzmann operator for granular gas dynamics with applications. J. Stat. Phys. 129(3), 517–536 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bagland, V., Lods, B.: Existence of self-similar profile for a kinetic annihilation model. J. Differ. Equ. 254, 3023–3080 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bagland, V., Lods, B.: Uniqueness of the self-similar profile for a kinetic annihilation model. J. Differ. Equ. 259, 7012–7059 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Basile, G., Benedetto, D., Bertini, L.: A gradient flow approach to linear Boltzmann equations. arXiv:1707.09204 (2017)

  7. Basile, G., Nota, A., Pezzotti, F., Pulvirenti, M.: Derivation of the Fick’s Law for the Lorentz Model in a low density regime. Commun. Math. Phys. 336(3), 1607–1636 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Basile, G., Nota, A., Pulvirenti, M.: A diffusion limit for a test particle in a random distribution of scatterers. J. Stat. Phys. 155(6), 1087–1111 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ben-Naim, E., Krapivsky, P., Leyvraz, F., Redner, S.: Kinetics of ballistically controlled reactions. J. Chem. Phys. 98, 7284 (1994)

    Article  Google Scholar 

  10. Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203, 493–553 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carleman, T.: Problèmes mathématiques dans la théorie cinétique de gaz, vol. 2. Almqvist & Wiksells boktr, Stockholm (1957)

    MATH  Google Scholar 

  12. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  13. Coppex, F., Droz, M., Trizac, E.: Hydrodynamics of probabilistic ballistic annihilation. Phys. Rev. E 72, 061102 (2004)

    Article  ADS  Google Scholar 

  14. Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci. 9, 1123–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esposito, R., Pulvirenti, M.: From particles to fluids. Hand-book of mathematical fuid dynamics, pp. 1–82. Elsevier, North-Holland (2004)

    Google Scholar 

  16. Gallavotti, G.: Grad-Boltzmann limit and Lorentz’s gas. Statistical Mechanics. A short treatise. Springer, Berlin (1999). Appendix 1.A2

    Google Scholar 

  17. Lods, B., Nota, A., Pezzotti, F.: A Kac model for kinetic annihilation. Preprint arXiv:1904.03447 (2019)

  18. Matthies, K., Stone, G., Theil, F.: The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinet. Related Models 11, 137–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marcozzi, M., Nota, A.: Derivation of the linear Landau equation and Linear Boltzmann equation from the Lorentz model with magnetic field. J. Stat. Phys. 162(6), 1539–1565 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Nota, A.: Diffusive limit for the random Lorentz gas. From particle systems to partial differential equations II. Proc. Math. Stat. 129, 273–292 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Nota, A., Simonella, S., Velázquez, J.J.L.: On the theory of Lorentz gases with long range interactions. Rev. Math. Phys. 30(3), 1850007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nota, A., Velázquez, J.J.L.: On the growth of a particle coalescing in a Poisson distribution of obstacles. Commun. Math. Phys. 354(3), 957–1013 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Spohn, H.: The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60, 277–D0290 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 53, 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. van Beijeren, H., Lanford, O.E., Lebowitz, J.L., Spohn, H.: J. Stat. Phys. 22(2), 237–257 (1980)

    Article  ADS  Google Scholar 

Download references


Alessia Nota and Raphael Winter acknowledge support through the CRC 1060 The mathematics of emergent effects of the University of Bonn that is funded through the German Science Foundation (DFG).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alessia Nota.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nota, A., Winter, R. & Lods, B. Kinetic Description of a Rayleigh Gas with Annihilation. J Stat Phys 176, 1434–1462 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: