Skip to main content

Non-Markovian Dynamics of Macroscopic Quantum Systems in Interaction with Non-equilibrium Environments

Abstract

We study the dynamics of a macroscopic superconducting qubit coupled to two independent non-stationary reservoirs by using time-dependent perturbation theory. We show that an equilibrium environment surpasses the coherent evolution of the macroscopic qubit completely. When the qubit couples to two different reservoirs, exemplifying a non-equilibrium environment, the short-time dynamics is affected by the interference between two reservoirs, implying the non-additivity of effects of two reservoirs. The non-additivity can be traced back to a non-Markovian effect, even though two reservoirs are independently assumed to be Markovian. Explicitly, the non-equilibrium environment intensifies both coherent and incoherent parts of the evolution. Therefore, the macroscopic qubit would evolve more coherently but at the price of a shorter decoherence time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    Book  Google Scholar 

  2. Schlosshauer, M.A.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  3. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  4. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  5. DiVincenzo, D.P.: Quantum computation. Science 270, 5234 (1995)

    MathSciNet  Article  Google Scholar 

  6. Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51, 992 (1995)

    ADS  Article  Google Scholar 

  7. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    ADS  Article  Google Scholar 

  8. Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. Devoret, M.H., Wallraff, A., Martinis, J.M.: Superconducting qubits: a short review (2004). arXiv:cond-mat/0411174

  10. Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009)

    ADS  Article  Google Scholar 

  11. Chow, J.M., et al.: Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett. 107, 080502 (2011)

    ADS  Article  Google Scholar 

  12. Kelly, J., et al.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66 (2015)

    ADS  Article  Google Scholar 

  13. Suter, D., Alvarez, G.A.: Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  14. Chin, A.W., Huelga, S.F., Plenio, M.B.: Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of longlived coherences. Philos. Trans. R. Soc. A 370, 3638 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  15. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)

    ADS  Article  Google Scholar 

  16. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  18. Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer, Berlin (2011)

    MATH  Google Scholar 

  19. Gurvitz, S.A., Prager, Y.S.: Microscopic derivation of rate equations for quantum transport. Phys. Rev. B 53, 15932 (1996)

    ADS  Article  Google Scholar 

  20. Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  21. Wichterich, H., Henrich, M.J., Breuer, H.-P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  22. Rivas, A., Plato, A.D.K., Huelga, S.F., Plenio, M.B.: Markovian master equations: a critical study. New J. Phys. 12, 113032 (2010)

    ADS  Article  Google Scholar 

  23. Ludwig, M., Hammerer, K., Marquardt, F.: Entanglement of mechanical oscillators coupled to a nonequilibrium environment. Phys. Rev. A 82, 012333 (2010)

    ADS  Article  Google Scholar 

  24. Levy, A., Kosloff, R.: The local approach to quantum transport may violate the second law of thermodynamics. Europhys. Lett. 107, 20004 (2014)

    ADS  Article  Google Scholar 

  25. Barra, F.: The thermodynamic cost of driving quantum systems by their boundaries. Sci. Rep. 5, 14873 (2015)

    ADS  Article  Google Scholar 

  26. Stockburger, J.T., Motz, T.: Thermodynamic deficiencies of some simple Lindblad operators: a diagnosis and a suggestion for a cure. Fortschr. Phys. 65, 1600067 (2017)

    Article  MATH  Google Scholar 

  27. Strasberg, P., Schaller, G., Brandes, T., Esposito, M.: Quantum and information thermodynamics: a unifying framework based on repeated interactions. Phys. Rev. X 7, 021003 (2017)

    Google Scholar 

  28. Schaller, G.: Open Quantum Systems Far from Equilibrium. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  29. Scala, M., et al.: Cavity losses for the dissipative Jaynes–Cummings Hamiltonian beyond rotating wave approximation. J. Phys. A 40, 14527 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. Purkayastha, A., Dhar, A., Kulkarni, M.: Out-ofequilibrium open quantum systems: a comparison of approximate quantum master equation approaches with exact results. Phys. Rev. A 93, 062114 (2016)

    ADS  Article  Google Scholar 

  31. Trushechkin, A.S., Volovich, I.V.: Perturbative treatment of inter-site couplings in the local description of open quantum networks. Europhys. Lett. 113, 30005 (2016)

    Article  Google Scholar 

  32. Eastham, P.R., Kirton, P., Cammack, H.M., Lovett, B.W., Keeling, J.: Bath-induced coherence and the secular approximation. Phys. Rev. A 94, 012110 (2016)

    ADS  Article  Google Scholar 

  33. Decordi, G.L., Vidiella-Barranco, A.: Two coupled qubits interacting with a thermal bath: a comparative study of different models. Opt. Commun. 387, 366 (2017)

    ADS  Article  Google Scholar 

  34. Hofer, P.P., et al.: Markovian master equations for quantum thermal machines: local versus global approach. New J. Phys. 19, 123037 (2017)

    ADS  Article  Google Scholar 

  35. Gonzalez, J.O., et al.: Testing the validity of the ‘local’and ‘global’ GKLS master equations on an exactly solvable model. Open Syst. Inf. Dyn. 24, 1740010 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  36. Mitchison, M.T., Plenio, M.B.: Non-additive dissipation in open quantum networks out of equilibrium. New J. Phys. 20, 033005 (2018)

    ADS  Article  Google Scholar 

  37. Ribeiro, P., Vieira, V.R.: Non-Markovian effects in electronic and spin transport. Phys. Rev. B 92, 100302 (2015)

    ADS  Article  Google Scholar 

  38. Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)

    ADS  Article  Google Scholar 

  39. Petrillo, G., Torre, G., Illuminati, F.: Asymptotic non-Markovianity. arXiv:1609.00917 (2016)

  40. Ferialdi, L., Smirne, A.: Momentum coupling in non-Markovian quantum Brownian motion. Phys. Rev. A 96, 012109 (2017)

    ADS  Article  Google Scholar 

  41. Sekatski, P., Gisin, N., Sangouard, N.: How difficult is it to prove the quantumness of macroscropic states? Phys. Rev. Lett. 113, 090403 (2014)

    ADS  Article  Google Scholar 

  42. Takagi, S.: Macroscopic Quantum Tunneling. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  43. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002)

    ADS  Article  Google Scholar 

  44. Landau, A., Aharonov, Y., Cohen, E.: Realization of qudits in coupled potential wells. Int. J. Quantum Inf. 14, 1650029 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  45. Caldeira, A., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374 (1983)

    ADS  Article  Google Scholar 

  46. Petruccione, F., Vacchini, B.: Quantum description of Einstein’s Brownian motion. Phys. Rev. E 71, 046134 (2005)

    ADS  Article  Google Scholar 

  47. Garg, A.: Tunnel splittings for one-dimensional potential wells revisited. Am. J. Phys. 68, 430 (2000)

    ADS  Article  Google Scholar 

  48. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Progr. Phys. 80, 106001 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  49. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169 (2013)

    ADS  Article  Google Scholar 

  50. Giazotto, F., Martinez-Perez, M.J.: The Josephson heat interferometer. Nature 492, 401 (2012)

    ADS  Article  Google Scholar 

  51. Golubev, D., Faivre, T., Pekola, J.P.: Heat transport through a Josephson junction. Phys. Rev. B 87, 094522 (2013)

    ADS  Article  Google Scholar 

  52. Ghahramani, F.T., Tirandaz, A.: Perturbative treatment of quantum to classical transition in chiral molecules: dilute phase versus condensed phase. J. Phys. B At. Mol. Opt. Phys. 50, 025103 (2017)

    ADS  Article  Google Scholar 

  53. Kolodynski, J., Brask, J.B., Perarnau-Llobet, M., Bylicka, B.: Adding dynamical generators in quantum master equations. Phys. Rev. A 97, 062124 (2018)

    ADS  Article  Google Scholar 

  54. Chan, C.-K., Lin, G.-D., Yelin, S.F., Lukin, M.D.: Quantum interference between independent reservoirs in open quantum systems. Phys. Rev. A 89, 042117 (2014)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of Matrix Elements of \(U_{I}(t)\)

Appendix: Calculation of Matrix Elements of \(U_{I}(t)\)

We expand U(t) up to the second order with respect to the interaction Hamiltonian \(H_{int}(t)=\sum _{{\mathcal {R}}}H_{S{\mathcal {R}}}(t)\) as

$$\begin{aligned} U(t)\simeq 1-\frac{i}{h}\int _{0}^{t}dt_{1}H_{int}(t_{1})-\frac{1}{h^{2}}\int _{0}^{t}dt_{2}\int _{0}^{t_{2}}dt_{1} H_{int}(t_{2}) H_{int}(t_{1}) \end{aligned}$$
(A.1)

The contribution of two-photon excitations in each reservoir and also of simultaneous single excitaions in both reservoirs are small. Therefore, we first calculate

$$\begin{aligned}&U(t)|0\rangle _{A}|0\rangle _{B}\simeq U_{0A,0B}(t)|0\rangle _{A}|0\rangle _{B}+\sum _{\alpha }\Big \{U_{\alpha A,\alpha B}(t)|\alpha \rangle _{A}|\alpha \rangle _{B}+U_{0A,\alpha B}(t)|0\rangle _{A}|\alpha \rangle _{B}\nonumber \\&\quad +U_{\alpha A,0B}(t)|\alpha \rangle _{A}|0\rangle _{B}\Big \}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} U_{0A,0B}(t)=&1-\frac{i}{2h}\sum _{{\mathcal {R}}}\sum _{\alpha }\int _{0}^{t}dt_{1}f_{\alpha ,{\mathcal {R}}}^{2}(t_{1})\nonumber \\&-\frac{1}{2h}\sum _{{\mathcal {R}}}\sum _{\alpha }\omega _{\alpha ,{\mathcal {R}}} \int _{0}^{t}dt_{2}\int _{0}^{t_{2}}dt_{1}e^{-i(t_{2}-t_{1})\omega _{\alpha ,{\mathcal {R}}}}f_{\alpha ,{\mathcal {R}}}(t_{2})f_{\alpha ,{\mathcal {R}}}(t_{1})\nonumber \\&~-\frac{1}{4h^{2}}\sum _{\alpha }\int _{0}^{t}dt_{2}\int _{0}^{t_{2}}dt_{1}\Big \{f_{\alpha ,A}^{2}(t_{2}),f_{\alpha ,B}^{2}(t_{1})\Big \}\nonumber \\ U_{\alpha A,\alpha B}(t)=&-\frac{1}{2h}\omega _{\alpha ,A}^{1/2}\omega _{\alpha ,B}^{1/2}\int _{0}^{t}dt_{2}\int _{0}^{t_{2}}dt_{1} \Big \{e^{i\omega _{\alpha ,A}t_{2}}f_{\alpha ,A}(t_{2}),e^{i\omega _{\alpha ,B}t_{1}}f_{\alpha ,B}(t_{1})\Big \}\nonumber \\ U_{0A,\alpha B}(t)=&\frac{i}{\sqrt{2h}}\omega _{\alpha ,B}^{1/2}\int _{0}^{t}dt_{1}e^{i\omega _{\alpha ,B}t_{1}}f_{\alpha ,B}(t_{2}) \nonumber \\&+\frac{1}{\sqrt{8h^{3}}}\omega _{\alpha ,B}^{1/2}\int _{0}^{t}dt_{2}\int _{0}^{t_{2}}dt_{1} \Big \{f_{\alpha ,A}^{2}(t_{2}),e^{i\omega _{\alpha ,B}t_{1}}f_{\alpha ,B}(t_{1})\Big \}, \end{aligned}$$
(A.3)

to find

$$\begin{aligned} |\chi _{n}(t)\rangle =&|0\rangle _{A}|0\rangle _{B}\langle n|U_{0A,0B}(t)|L\rangle +\sum _{\alpha }e^{-i\omega _{\alpha ,B}t}|0\rangle _{A}|\alpha \rangle _{B}\langle n|U_{0A,\alpha B}(t)|L\rangle \nonumber \\&+\sum _{\alpha }e^{-i\omega _{\alpha ,A}t}|\alpha \rangle _{A}|0\rangle _{B}\langle n|U_{\alpha A,0B}(t)|L\rangle \nonumber \\&+\sum _{\alpha }e^{-i(\omega _{\alpha ,A}+\omega _{\alpha ,B})t}|\alpha \rangle _{A}|\alpha \rangle _{B}\langle n|U_{\alpha A,\alpha B}(t)|L\rangle , \end{aligned}$$
(A.4)

where we defined \(f_{\alpha ,{\mathcal {R}}}(t)=\omega _{\alpha ,{\mathcal {R}}}f_{\alpha ,{\mathcal {R}}}(x(t))\), \(x(t)=e^{iH_{S}t/h}xe^{-iH_{S}t/h}\) and \(\{g(t),h(t')\}=g(t)h(t')+g(t')h(t)\). Note that \(U_{\alpha A,0B}(t)\) can be obtained by interconverting \(A\leftrightarrow B\) of \(U_{0A,\alpha B}(t)\) in (A.3).

The problem is now reduced to the evaluation of matrix elements of interaction Hamiltonian in (A.4). The potential U(x) being an even function, the energy eigenstates \(|n\rangle \) have definite parity. Since \(U_{0A,0B}(t)\) and \(U_{\alpha A,\alpha B}(t)\) are even functions and \(U_{0A,\alpha B}(t)\) and \(U_{\alpha A,0B}(t)\) are odd functions, the following selection rules are identified

$$\begin{aligned} \langle m| U_{0A,0B}(t)|n\rangle&=\langle m| U_{\alpha A,\alpha B}(t)|n\rangle =0, \nonumber \\ \langle n| U_{0A,\alpha B}(t)|n\rangle&=\langle n| U_{\alpha A,0B}(t)|n\rangle =0. \end{aligned}$$
(A.5)

The diagonal matrix elements of \(U_{0A,0B}(t)\) are evaluated as

$$\begin{aligned} \langle n|U_{0A,0B}(t)|n\rangle&=1-\frac{it}{h}\sum _{{\mathcal {R}}}\Bigg \{\delta E_{n,{\mathcal {R}}}^{(1)}-\frac{1}{\pi }\sum _{m}x_{mn}^{2}\int _{0}^{\infty }d\omega _{{\mathcal {R}}} \frac{J(\omega _{{\mathcal {R}}})}{\omega _{{\mathcal {R}}}+\Omega _{mn}}\Bigg \} \nonumber \\&-\frac{1}{\pi h}\sum _{{\mathcal {R}}}\sum _{m}x_{mn}^{2}\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}}) \frac{1-e^{\imath t(\omega _{{\mathcal {R}}}+\Omega _{mn)}}}{(\omega _{{\mathcal {R}}}+\Omega _{mn})^{2}}-\frac{t^{2}}{h^{2}}\delta E_{n,A}^{(1)}\delta E_{n,B}^{(1)}, \end{aligned}$$
(A.6)

The quantity embraced by the bracket on the right-hand side of (A.6) coincides with \(\delta E_{n,{\mathcal {R}}}\) in (11). Thus, the following expression is valid up to the second order

$$\begin{aligned}&\langle n|U_{0A,0B}(t)|n\rangle \simeq e^{-it/h\sum _{{\mathcal {R}}}\delta E_{n,{\mathcal {R}}}}\Bigg \{1-\frac{1}{\pi h}\sum _{{\mathcal {R}}}\sum _{m}x_{mn}^{2}\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}})\nonumber \\&\quad \times \Big (\frac{2\sin ^{2}\{(\omega _{{\mathcal {R}}}+\Omega _{mn})t/2\}}{(\omega _{{\mathcal {R}}}+\Omega _{mn})^{2}}-i\frac{\sin \{(\omega _{{\mathcal {R}}} +\Omega _{mn})t\}}{(\omega _{{\mathcal {R}}}+\Omega _{mn})^{2}}-\frac{t^{2}}{h^{2}}\delta E_{n,A}^{(1)}\delta E_{n,B}^{(1)}\Big )\Bigg \}. \end{aligned}$$
(A.7)

We assume that the reservoirs’ cut-off strengths are much higher than the system’s characteristic strength (Markov approximation), i.e. \(\Lambda _{{\mathcal {R}}}\gg \Omega \), so that at times much higher than \(\Omega ^{-1}\), the first term of the integral in (A.7) can be approximated by a delta function \(\delta (\omega _{{\mathcal {R}}}+\Omega _{mn})\). Obviously, the result of the corresponding integral would be \(J(\omega _{{\mathcal {R}}}+\Omega _{mn})\), which is zero for \(\Omega _{mn}\ge 0\). The elements of \(U_{0A,0B}(t)\) are then reduced to

$$\begin{aligned} \langle 1|U_{0A,0B}(t)|1\rangle&\simeq e^{-it/h\sum _{{\mathcal {R}}}\delta E_{1,{\mathcal {R}}}}\Bigg \{1+\frac{i}{\pi h}\sum _{{\mathcal {R}}}\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}})\frac{\sin \{(\omega _{{\mathcal {R}}} +\Delta )t\}}{(\omega _{{\mathcal {R}}}+\Delta )^{2}}\nonumber \\&\quad -\frac{t^{2}}{h^{2}}\delta E_{1A}^{(1)}\delta E_{1B}^{(1)}\Bigg \},\nonumber \\ \langle 2|U_{0A,0B}(t)|2\rangle&\simeq e^{-it/h\sum _{{\mathcal {R}}}\delta E_{2,{\mathcal {R}}}}\Bigg \{1-\sum _{{\mathcal {R}}}\frac{\Gamma _{2,{\mathcal {R}}}t}{2}\nonumber \\&\quad +\frac{i}{\pi h}\sum _{{\mathcal {R}}}\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}})\frac{\sin \{(\omega _{{\mathcal {R}}} -\Delta )t\}}{(\omega _{{\mathcal {R}}}-\Delta )^{2}}-\frac{t^{2}}{h^{2}}\delta E_{2A}^{(1)}\delta E_{2B}^{(1)}\Bigg \}. \end{aligned}$$
(A.8)

If the coupling between the system and each reservoir is considered to be weak, we have \(\Gamma _{2,{\mathcal {R}}}\ll \Omega \). At the temporal domain \(\Omega ^{-1}\ll t\ll \Gamma _{2,{\mathcal {R}}}^{-1}\), we finally obtain

$$\begin{aligned} \langle 1|U_{0A,0B}(t)|1\rangle&\approx \prod _{{\mathcal {R}}}\exp \Bigg \{-\frac{i}{h}\Big (t\delta E_{1,{\mathcal {R}}}-\frac{1}{\pi }\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}})\frac{\sin \{(\omega _{{\mathcal {R}}} +\Delta )t\}}{(\omega _{{\mathcal {R}}}+\Delta )^{2}}\Big )\nonumber \\&\quad -\frac{t^{2}}{h^{2}}\delta E_{1A}^{(1)}\delta E_{1B}^{(1)}\Bigg \},\nonumber \\ \langle 2|U_{0A,0B (t)}|2\rangle&\approx \prod _{{\mathcal {R}}}\exp \Bigg \{-\frac{\Gamma _{2,{\mathcal {R}}}t}{2}-\frac{i}{h}\Big (t\delta E_{2,{\mathcal {R}}}\nonumber \\&\quad -\frac{1}{\pi }\int _{0}^{\infty }d\omega _{{\mathcal {R}}}J(\omega _{{\mathcal {R}}})\frac{\sin \{(\omega _{{\mathcal {R}}} -\Delta )t\}}{(\omega _{{\mathcal {R}}}-\Delta )^{2}}\Big )-\frac{t^{2}}{h^{2}}\delta E_{2A}^{(1)}\delta E_{2B}^{(1)}\Bigg \}. \end{aligned}$$
(A.9)

The elements of \(U_{\alpha A,\alpha B}(t)\) are obtained as

$$\begin{aligned}&\langle n|U_{\alpha A,\alpha B}(t)|n\rangle \nonumber \\&\quad =-\frac{\pi }{4h}\gamma _{\alpha ,A}\omega _{\alpha ,A}^{3/2}\gamma _{\alpha ,B}\omega _{\alpha ,B}^{3/2}\nonumber \\&\qquad \times \Bigg \{\frac{1-e^{-i(\omega _{\alpha ,A}+\omega _{\alpha ,B})t}}{(\omega _{\alpha ,A}+\omega _{\alpha ,B})(\omega _{\alpha ,B}+(-1)^{n+1}\Delta )}+\frac{e^{-i(\omega _{\alpha ,A}+(-1)^{n+1}\Delta )t}-1}{(\omega _{\alpha ,A}+(-1)^{n+1}\Delta )(\omega _{\alpha ,B}+(-1)^{n+1}\Delta )}\nonumber \\&\qquad +\frac{1-e^{-i(\omega _{\alpha ,A}+\omega _{\alpha ,B})t}}{(\omega _{\alpha ,A}+\omega _{\alpha ,B})(\omega _{\alpha ,A}+(-1)^{n+1}\Delta )}+\frac{e^{-i(\omega _{\alpha ,B}+(-1)^{n+1}\Delta )t}-1}{(\omega _{\alpha ,A}+(-1)^{n+1}\Delta )(\omega _{\alpha ,B}+(-1)^{n+1}\Delta )}\Bigg \}. \end{aligned}$$
(A.10)

The elements of \(U_{0A,\alpha B}(t)\) are evaluated as

$$\begin{aligned} \langle m|U_{0A,\alpha B}(t)|n\rangle= & {} \sqrt{\frac{\pi }{h}}\Big (i+\frac{t}{h}\delta E_{n,A}^{(1)}\Big )\gamma _{\alpha ,B}^{2}\omega _{\alpha ,B}^{3}\frac{\sin \big \{(\omega _{\alpha ,B}+(-1)^{m}\Delta )t/2\big \}}{\omega _{\alpha ,B}+(-1)^{m}\Delta }\nonumber \\&\times e^{i(\omega _{\alpha ,B}+(-1)^{m}\Delta )t/2}. \end{aligned}$$
(A.11)

The elements of \(U_{\alpha A,0B}(t)\) are calculated by interconverting \(A\leftrightarrow B\) in \(\langle m|U_{0A,\alpha B}(t)|n\rangle \) in (A.11).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahmansoori, N., Taher Ghahramani, F. & Shafiee, A. Non-Markovian Dynamics of Macroscopic Quantum Systems in Interaction with Non-equilibrium Environments. J Stat Phys 176, 541–555 (2019). https://doi.org/10.1007/s10955-019-02308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02308-1

Keywords

  • Macroscopic quantum systems
  • Superconducting qubit
  • Non-equilibrium environment
  • Non-Markovian dynamics