Skip to main content
Log in

The High Temperature Crossover for General 2D Coulomb Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider N particles in the plane, influenced by a general external potential, that are subject to the Coulomb interaction in two dimensions at inverse temperature \(\beta \). At large temperature, when scaling \(\beta =2c/N\) with some fixed constant \(c>0\), in the large-N limit we observe a crossover from Ginibre’s circular law or its generalisation to the density of non-interacting particles at \(\beta =0\). Using Ward identities and saddle point methods we derive a partial differential equation of generalised Liouville type for the crossover density. For radially symmetric potentials we present some asymptotic results and give examples for the numerical solution of the crossover density. These findings generalise previous results when the interacting particles are confined to the real line. In that situation we derive an integral equation for the resolvent valid for a general potential as well, and present the analytic solution for the density in the case of a Gaussian plus logarithmic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. For an interpretation of these real and quaternionic Ginibre ensembles as a multi component Coulomb gas we refer to [33].

  2. Note that these and several other authors [9] use a different convention, denoting \(\beta = 2\tilde{\beta }\).

References

  1. Akemann, G., Baik, J., Di Francesco, P. (ed.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

  2. Akemann, G., Cikovic, M., Venker, M.: Universality at weak and strong non-hermiticity beyond the elliptic Ginibre ensemble. Commun. Math. Phys. 362(3), 1111–1141 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Allez, R., Bouchaud, J.-P., Guionnet, A.: Invariant \(\beta \)-ensembles and the Gauss–Wigner crossover. Phys. Rev. Lett. 109(9), 094102 (2012)

    Article  ADS  Google Scholar 

  4. Allez, R., Bouchaud, J.-P., Majumdar, S.N., Vivo, P.: Invariant \(\beta \)-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko–Pastur law. J. Phys. A 46(1), 015001 (2012)

    Article  MATH  ADS  Google Scholar 

  5. Allez, R., Guionnet, A.: A diffusive matrix model for invariant \(\beta \)-ensembles. Electron. J. Probab. 18(62), 1–30 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Ambjørn, J., Chekhov, L., Kristjansen, C.F., Makeenko, Y.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404(1–2), 127–172 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Ameur, Y.: Repulsion in low temperature \(\beta \)-ensembles. Commun. Math. Phys. 359(3), 1079–1089 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157–1201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ameur, Y., Kang, N.-G., Makarov, N.: Rescaling Ward identities in the random normal matrix model. Constr. Approx. (2018). https://doi.org/10.1007/s00365-018-9423-9

    Article  MATH  Google Scholar 

  10. Ameur, Y., Kang, N.-G., Seo, S.-M.: The random normal matrix model: insertion of a point charge. preprint arXiv:1804.08587 (2018)

  11. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. preprint arXiv:1609.08582 (2016)

  12. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: bulk universality. preprint arXiv:0811.3341 (2008)

  13. Bolley, F., Chafaï, D., Fontbona, J., et al.: Dynamics of a planar Coulomb gas. Ann. Appl. Probab. 28(5), 3152–3183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borot, G., Guionnet, A., Kozlowski, K.K.: Large-n asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Notices 2015(20), 10451–10524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgade, P., Erdös, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Bourgade, P., Erdös, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bucklew, J.A.: Large Deviation Techniques in Decision, Simulation, and Estimation, vol. 190. Wiley, New York (1990)

    Google Scholar 

  18. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143(3), 501–525 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II. Commun. Math. Phys. 174(2), 229–260 (1995)

    Article  MATH  ADS  Google Scholar 

  20. Chafai, D., Hardy, A., Maïda, M.: Concentration for Coulomb gases and Coulomb transport inequalities. J. Funct. Anal. 275(6), 1447–1483 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chalker, J.T., Mehlig, B.: Eigenvector statistics in non-Hermitian random matrix ensembles. Phys. Rev. Lett. 81(16), 3367 (1998)

    Article  ADS  Google Scholar 

  22. Chau, L.-L., Zaboronsky, O.: On the structure of correlation functions in the normal matrix model. Commun. Math. Phys. 196(1), 203–247 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Crowdy, D.G.: General solutions to the 2d Liouville equation. Int. J. Eng. Sci. 35(2), 141–149 (1997)

    Article  MATH  Google Scholar 

  24. Cunden, F.D., Mezzadri, F., Vivo, P.: Large deviations of radial statistics in the two-dimensional one-component plasma. J. Stat. Phys. 164(5), 1062–1081 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Renormalizability of Liouville quantum field theory at the Seiberg bound. Electron. J. Probab. 22(93), 26 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010). Corrected reprint of the second edition (1998)

    Book  MATH  Google Scholar 

  27. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Duy, K.T., Shirai, T.: The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles. Electron. Commun. Probab. 20, 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3(6), 1191–1198 (1962)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Edelman, A.: The probability that a random real gaussian matrix haskreal eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997)

    Article  MATH  Google Scholar 

  31. Forrester, P.: Exact results for two-dimensional Coulomb systems. Phys. Rep. 301(1–3), 235–270 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  32. Forrester, P.J.: Log-gases and Random Matrices (LMS-34). Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  33. Forrester, P.J.: Analogies between random matrix ensembles and the one-component plasma in two-dimensions. Nucl. Phys. B 904, 253–281 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. García-Zelada, D.: A large deviation principle for empirical measures on polish spaces: Application to singular Gibbs measures on manifolds. arXiv preprint arXiv:1703.02680 (2017)

  35. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6(3), 440–449 (1965)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Götze, F., Tikhomirov, A.: The circular law for random matrices. Ann. Probab. 38(4), 1444–1491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hastings, M.: Eigenvalue distribution in the self-dual non-Hermitian ensemble. J. Stat. Phys. 103(5–6), 903–913 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hedenmalm, H., Makarov, N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106(4), 859–907 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hedenmalm, H., Wennman, A.: Planar orthogogonal polynomials and boundary universality in the random normal matrix model. preprint arXiv:1710.06493, (2017)

  40. Itoi, C.: Universal wide correlators in non-Gaussian orthogonal, unitary and symplectic random matrix ensembles. Nucl. Phys. B 493(3), 651–659 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kang, N.G., Makarov, N.G.: Gaussian free field and conformal field theory. Astérisque 353, viii–136 (2013)

  43. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. Invent. Math. 210(3), 645–757 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Lehmann, N., Sommers, H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67(8), 941–944 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Livan, G., Novaes, M., Vivo, P.: Introduction to Random Matrices: Theory and Practice. Springer, Cham (2017)

    MATH  Google Scholar 

  46. Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  47. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W. (ed.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

  48. Petz, D., Hiai, F.: Logarithmic energy as an entropy functional. Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997). Contemporary Mathematics, vol. 217, pp. 205–221. American Mathematical Society, Providence (1998)

    Chapter  Google Scholar 

  49. Ramirez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rogers, L., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316. Springer, Berlin (1997). Appendix B by Thomas Bloom

    Book  Google Scholar 

  52. Serfaty, S.: Microscopic description of log and Coulomb gases. preprint arXiv:1709.04089 (2017)

  53. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Valkó, B., Virág, B.: The sine-\(\beta \) operator. Invent. Math. 209(1), 275–327 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Venker, M.: Particle systems with repulsion exponent \(\beta \) and random matrices. Electron. Commun. Probab 18(83), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Zabrodin, A., Wiegmann, P.: Large-N expansion for the 2D Dyson gas. J. Phys. A 39(28), 8933–8964 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge discussions and helpful suggestions of Trinh Khanh Duy, Adrien Hardy, Nam-Gyu Kang, Mylène Maïda, Seong-Mi Seo, Pierpaolo Vivo and Oleg Zaboronski, as well as detailed comments by Yacin Ameur and Gaultier Lambert on a preliminary version of the paper. We also wish to express our gratitude to Jeongho Kim for several valuable comments concerning the numerical verifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Akemann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Financial support to Gernot Akemann by the German Research Foundation (DFG) through CRC1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications” and to Sung-Soo Byun by Samsung Science and Technology Foundation (SSTFBA1401-01) are acknowledged. Both authors are equally grateful to the DFG’s International Research Training Group IRTG 2235 supporting the Bielefeld-Seoul exchange programme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akemann, G., Byun, SS. The High Temperature Crossover for General 2D Coulomb Gases. J Stat Phys 175, 1043–1065 (2019). https://doi.org/10.1007/s10955-019-02276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02276-6

Keywords

Navigation