Skip to main content
Log in

Theoretical Model of Transcription Based on Torsional Mechanics of DNA Template

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Transcription is the first step of gene expression, in which a particular segment of DNA is copied to RNA by the enzyme RNA polymerase (RNAP). Despite many details of the complex interactions between DNA and RNA synthesis disclosed experimentally, much of physical behavior of transcription remains largely unknown. Understanding torsional mechanics of DNA and RNAP together with its nascent RNA and RNA-bound proteins in transcription maybe the first step towards deciphering the mechanism of gene expression. In this study, based on the balance between viscous drag on RNA synthesis and torque resulted from untranscribed supercoiled DNA template, a simple model is presented to describe mechanical properties of transcription. With this model, the rotation and supercoiling density of the untranscribed DNA template are discussed in detail. Two particular cases of transcription are considered, transcription with constant velocity and transcription with torque dependent velocity. Our results show that, during the initial stage of transcription, rotation originated from the transcribed part of DNA template is mainly released by the rotation of RNAP synthesis. During the intermediate stage, the rotation is usually released by both the supercoiling of the untranscribed part of DNA template and the rotation of RNAP synthesis, with proportion depending on the friction coefficient in environment and the length of nascent RNA. However, with the approaching to the upper limit of twisting of the untranscribed DNA template, the rotation resulted from transcription will then be mainly released by the rotation of RNAP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper, G.M.: The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Inc., Sunderland (2000)

    Google Scholar 

  2. Dehaseth, P.L., Zupancic, M.L., Record Jr., M.T.: RNA polymerase–promoter interactions: the comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025 (1998)

    Google Scholar 

  3. Cheetham, G.M.T., Jeruzalmi, D., Steitz, T.A.: Structural basis for initiation of transcription from an RNA polymerase promoter complex. Nature 399, 80–83 (1999)

    Article  ADS  Google Scholar 

  4. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A.A., Levine, M., Losick, R.M.: Molecular Biology of the Gene, 7th edn. Pearson, London (2013)

    Google Scholar 

  5. Wilkins, M.H., Stokes, A.R., Wilson, H.R.: Molecular structure of deoxypentose nucleic acids. Nature 171(4356), 738–740 (1953)

    Article  ADS  Google Scholar 

  6. Liu, L.F., Wang, J.C.: Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. 84(20), 7024–7027 (1987)

    Article  ADS  Google Scholar 

  7. Giaever, G.N., Wang, J.C.: Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55(5), 849–856 (1988)

    Article  Google Scholar 

  8. Tsao, Y.P., Wu, H.Y., Liu, L.F.: Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56(1), 111–118 (1989)

    Article  Google Scholar 

  9. Krasilnikov, A.S., Podtelezhnikov, A., Vologodskii, A., Mirkin, S.M.: Large-scale effects of transcriptional DNA supercoiling in vivo. J. Mol. Biol. 292(5), 1149–1160 (1999)

    Article  Google Scholar 

  10. Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N., Kinosita Jr., K.: Direct observation of DNA rotation during transcription by \(Escherichia coli\) RNA polymerase. Nature 409(6816), 113–115 (2001)

    Article  ADS  Google Scholar 

  11. Kouzine, F., Liu, J., Sanford, S., Chung, H.J., Levens, D.: The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11(11), 1092–1100 (2004)

    Article  Google Scholar 

  12. Forth, S., Sheinin, M.Y., Inman, J., Wang, M.D.: Torque measurement at the single-molecule level. Ann. Rev. Biophys. 42(42), 583–604 (2013)

    Article  Google Scholar 

  13. Ma, J., Wang, M.D.: DNA supercoiling during transcription. Biophys. Rev. 8(1), 75–87 (2016)

    Article  Google Scholar 

  14. Rybenkov, V.V., Vologodskii, A.V., Cozzarelli, N.R.: The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucl. Acids Res. 25(7), 1412–1418 (1997)

    Article  Google Scholar 

  15. Moroz, J.D., Nelson, P.: Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. 94(26), 14418–14422 (1997)

    Article  ADS  Google Scholar 

  16. Marko, F.J.: Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E 76(2), 021926 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lavelle, C.: Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr. Opin. Genet. Dev. 25, 74–84 (2014)

    Article  Google Scholar 

  18. Sevier, S.A., Levine, H.: Mechanical properties of transcription. Phys. Rev. Lett. 118(26), 268101 (2017)

    Article  ADS  Google Scholar 

  19. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  20. Chong, S., Chen, C., Ge, H., Xie, X.S.: Mechanism of transcriptional bursting in bacteria. Cell 158(2), 314–326 (2014)

    Article  Google Scholar 

  21. Müller, M.J.I., Klumpp, S., Lipowsky, R.: Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. 105, 4609–4614 (2008)

    Article  ADS  Google Scholar 

  22. Kunwar, A., Mogilner, A.: Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing. Phys. Biol. 7(1), 16012 (2010)

    Article  ADS  Google Scholar 

  23. Jie, J., Bai, L., Wang, M.D.: Transcription under torsion. Science 340(6140), 1580–1583 (2013)

    Article  ADS  Google Scholar 

  24. Nicolas, D., Phillips, N.E., Naef, F.: What shapes eukaryotic transcriptional bursting? Mol. Biosyst. 13(2), 1280–1290 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Zhang.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, Y. Theoretical Model of Transcription Based on Torsional Mechanics of DNA Template. J Stat Phys 174, 1316–1326 (2019). https://doi.org/10.1007/s10955-019-02236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02236-0

Keywords

Navigation