Skip to main content
Log in

Tutte Polynomials of Two Self-similar Network Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Tutte polynomial T(Gxy) of a graph G, or equivalently the q-state Potts model partition function, is a two-variable polynomial graph invariant of considerable importance in combinatorics and statistical physics. Graph operations have been extensively applied to model complex networks recently. In this paper, we study the Tutte polynomials of the diamond hierarchical lattices and a class of self-similar fractal models which can be constructed through graph operations. Firstly, we find out the behavior of the Tutte polynomial under k-inflation and k-subdivision which are two graph operations. Secondly, we compute and gain the Tutte polynomials of this two self-similar fractal models by using their structure characteristic. Moreover, as an application of the obtained results, some evaluations of their Tutte polynomials are derived, such as the number of spanning trees and the number of spanning forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48(1), 106–109 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54(1), 235–268 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  ADS  Google Scholar 

  5. Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Jin, X.A., Zhang, F.J.: Zeros of the Jones polynomial for multiple crossing-twisted links. J. Stat. Phys. 140(6), 1054–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ellis-Monaghan, J.A., Merino, C.: Graph polynomials and their applications I: the Tutte polynomial. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks, pp. 219–255. Birkhüser, Boston (2011)

    Chapter  Google Scholar 

  8. Welsh, D.J.A., Merino, C.: The Potts model and the Tutte polynomial. J. Math. Phys. 41, 1127–1152 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Griffiths, R.B., Kaufman, M.: First-order transitions in defect structures at a second-order critical point for the Potts model on hierarchical lattices. Phys. Rev. B 26, 5022–5032 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hu, B.: Problem of universality in phase transitions on hierarchical lattices. Phys. Rev. Lett. 55, 2316–2319 (1985)

    Article  ADS  Google Scholar 

  11. Yang, Z.R.: Family of diamond-type hierarchical lattices. Phys. Rev. B 38, 728–731 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. Qin, Y., Yang, Z.R.: Diamond-type hierarchical lattices for the Potts antiferromagnet. Phys. Rev. B 43, 8576–8582 (1991)

    Article  ADS  Google Scholar 

  13. de Silva, L.: Criticality and multifractality of the Potts ferromagnetic model on fractal lattices. Phys. Rev. B 53, 6345–6354 (1996)

    Article  ADS  Google Scholar 

  14. Muzy, P.T., Salinas, S.R.: Ferromagnetic Potts model on a hierarchical lattice with random layered interactions. Int. J. Mod. Phys. B 4, 397–409 (1999)

    Article  ADS  Google Scholar 

  15. Bleher, P.M., Lyubich, M.Y.: Julia Sets and complex singularities in hierarchical Ising models. Commun. Math. Phys. 141, 453–474 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Qiao, J.Y.: Julia sets and complex singularities in diamondlike hierarchical Potts models. Sci. China Ser. A 48, 388–412 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, F., Yao, B.: The number of spanning trees of self-similar fractal models. Inf. Process. Lett. 136, 64–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  19. Chang, S.C., Shrock, R.: Structure of the partition function and transfer matrices for the Potts model in a magnetic field on lattice strips. J. Stat. Phys. 137(4), 667–699 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shrock, R., Xu, Y.: The structure of chromatic polynomials of planar triangulation graphs and implications for chromatic zeros and asymptotic limiting quantities. J. Phys. A 45(21), 215202 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chang, S.C., Shrock, R.: Exact partition functions for the q-state Potts model with a generalized magnetic field on lattice strip graphs. J. Stat. Phys. 161(4), 915–932 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Alvarez, P.D., Canfora, F., Reyes, S.A., Riquelme, S.: Potts model on recursive lattices: some new exact results. Eur. Phys. J. B 85(3), 99 (2012)

    Article  ADS  Google Scholar 

  23. Peng, J.H., Xiong, J., Xu, G.A.: Tutte polynomial of pseudofractal scale-free web. J. Stat. Phys. 159(5), 1196–1215 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Liao, Y.H., Hou, Y.P., Shen, X.L.: Tutte polynomial of the apollonian network. J. Stat. Mech. 10, P10043 (2014)

    Article  MathSciNet  Google Scholar 

  25. Chen, H.L., Deng, H.Y.: Tutte polynomial of scale-free networks. J. Stat. Phys. 163(4), 714–732 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gong, H.L., Jin, X.A.: A general method for computing Tutte polynomials of self-similar graphs. Physica A 483, 117–129 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lin, Y., Wu, B., Zhang, Z.Z., Chen, G.: Counting spanning trees in self-similar networks by evaluating determinants. J. Math. Phys. 52, 113303 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rozenfeld, H., Havlin, S., Ben-Avraham, D.: Fractal and transfractal recursive scale-free net. New J. Phys. 9, 175 (2007)

    Article  ADS  Google Scholar 

  29. Jing, H., Shu, C.L.: On the normalized Laplacian, degree-Kirchhoff index and spanning trees of graphs. Bull. Aust. Math. Soc. 91, 353–367 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and helpful suggestions, which have considerably improved the presentation of this paper. This work was supported by the National Natural Science Foundation of China (No. 11571101), the Scientific Research Fund of Hunan Provincial Education Department (No. 16C0872) and the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3255). Yunhua Liao and M. A. Aziz-Alaoui were supported by Normandie region France and the XTerm ERDF project (European Regional Development Fund) on Complex Networks and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Xie, X., Hou, Y. et al. Tutte Polynomials of Two Self-similar Network Models. J Stat Phys 174, 893–905 (2019). https://doi.org/10.1007/s10955-018-2204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2204-9

Keywords

Navigation