Skip to main content
Log in

Improving the Stochastic Resonance in a Bistable System with the Bounded Noise Excitation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The stochastic resonance (SR) phenomenon is investigated in a typical bistable system that excited by the bounded noise and the weak low-frequency signal simultaneously. Based on numerical simulations, the main results are obtained. The SR performance mainly depends on the mean frequency and is influenced by the randomness level of the bounded noise. It occurs when the mean frequency is much larger than or approximates the signal frequency. However, the SR almost disappears when the mean frequency is much smaller than the signal frequency. By introducing an auxiliary high-frequency signal in the excitations, another phenomenon called as vibrational resonance (VR) appears. With the cooperation of VR, the SR performance is greatly improved. The results in this paper give a reference to deal with the weak signal submerged in the bounded noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  ADS  Google Scholar 

  3. Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995)

    Article  ADS  Google Scholar 

  4. Mizrahi, A., Locatelli, N., Matsumoto, R.: Magnetic stochastic oscillators: noise-induced synchronization to underthreshold excitation and comprehensive compact model. IEEE Trans. Magn. 51, 1401404 (2015)

    Article  Google Scholar 

  5. Lai, Y.M., Porter, M.A.: Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Phys. Rev. E 88, 012905 (2013)

    Article  ADS  Google Scholar 

  6. Mantegna, R.N., Spagnolo, B.: Noise enhanced stability in an unstable system. Phys. Rev. Lett. 76, 563 (1996)

    Article  ADS  Google Scholar 

  7. Dubkov, A.A., Agudov, N.V., Spagnolo, B.: Noise-enhanced stability in fluctuating metastable states. Phys. Rev. E 69, 061103 (2004)

    Article  ADS  Google Scholar 

  8. Trapanese, M.: Noise enhanced stability in magnetic systems. J. Appl. Phys. 105, 07D313 (2009)

    Article  Google Scholar 

  9. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  10. Galdi, V., Pierro, V., Pinto, I.M.: Evaluation of stochastic-resonance-based detectors of weak harmonic signals in additive white Gaussian noise. Phys. Rev. E 57, 6470 (1998)

    Article  ADS  Google Scholar 

  11. Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60, 1494 (1999)

    Article  ADS  Google Scholar 

  12. Wu, D., Zhu, S.: Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Phys. Lett. A 363, 202–212 (2007)

    Article  ADS  Google Scholar 

  13. He, M., Xu, W., Sun, Z., Du, L.: Characterization of stochastic resonance in a bistable system with Poisson white noise using statistical complexity measures. Commun. Nonlinear Sci. Numer. Simul. 28, 39–49 (2015)

    Article  ADS  Google Scholar 

  14. Xu, Y., Wu, J., Zhang, H.Q., Ma, S.J.: Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise. Nonlinear Dynam. 70, 531–539 (2012)

    Article  MathSciNet  Google Scholar 

  15. d’Onofrio, A.: Bounded Noises in Physics, Biology, and Engineering. Springer, New York (2013)

    Book  Google Scholar 

  16. Yang, X.L., Jia, Y.B., Zhang, L.: Impact of bounded noise and shortcuts on the spatiotemporal dynamics of neuronal networks. Physica A 393, 617–623 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Guo, W., Mei, D.C.: Stochastic resonance in a tumorCimmune system subject to bounded noises and time delay. Physica A 416, 90–98 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yao, Y., Deng, H., Ma, C., Yi, M., Ma, J.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin-Huxley neurons. PLoS ONE 12, e0171273 (2017)

    Article  Google Scholar 

  19. Lu, S., He, Q., Zhang, H., Zhang, S., Kong, F.: Signal amplification and filtering with a tristable stochastic resonance cantilever. Rev. Sci. Instrum. 84, 026110 (2013)

    Article  ADS  Google Scholar 

  20. Lu, S., He, Q., Kong, F.: Stochastic resonance with WoodsCSaxon potential for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 45, 488–503 (2014)

    Article  ADS  Google Scholar 

  21. Liu, X., Liu, H., Yang, J., Litak, G., Cheng, G., Han, S.: Improving the bearing fault diagnosis efficiency by the adaptive stochastic resonance in a new nonlinear system. Mech. Syst. Signal Process. 96, 58–76 (2017)

    Article  ADS  Google Scholar 

  22. Huang, D., Yang, J., Zhang, J., Liu, H.: An improved adaptive stochastic resonance method for improving the efficiency of bearing faults diagnosis. Proc. Inst. Mech. Eng. Part C 232, 2352–2368 (2018)

    Article  Google Scholar 

  23. Li, J., Chen, X., Du, Z., Fang, Z., He, Z.: A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis. Renew. Energ. 60, 7–19 (2013)

    Article  Google Scholar 

  24. Yang, J.H., Sanjuán, M.A.F., Liu, H.G., Litak, G., Li, X.: Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun. Nonlinear Sci. Numer. Simul. 41, 104–117 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Landa, P.S., McClintock, P.V.E.: Vibrational resonance. J. Phys. A 33, L433–L438 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chizhevsky, V.N., Giacomelli, G.: Vibrational resonance and the detection of aperiodic binary signals. Phys. Rev. E 77, 051126 (2008)

    Article  ADS  Google Scholar 

  27. Wedig, W.V.: Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8, 13–25 (1990)

    Article  Google Scholar 

  28. Blekhman, I.I.: Vibrational Mechanics, Page Numbers. World Scientific, Singapore (2000)

    Book  Google Scholar 

  29. Thomsen, J.J.: Some general effects of strong high-frequency excitaiton: stiffing, biasing and smoothening. J. Sound Vib. 253, 807–831 (2002)

    Article  ADS  Google Scholar 

  30. Thomsen, J.J.: Vibrations and Stability: Advanced theory, Analysis, and Tools. Springer, Berlin (2003)

    Book  Google Scholar 

  31. Yang, J.H.: Bifurcation and Resonance in Fractional-order Systems. Science Press, Beijing (2017)

    Google Scholar 

  32. Chizhevsky, V.N., Giacomelli, G.: Improvement of signal-to-noise ratio in a bistable optical system: comparison between vibrational and stochastic resonance. Phys. Rev. A 71, 011801 (2005)

    Article  ADS  Google Scholar 

  33. Wannamaker, R.A., Lipshitz, S.P., Vanderkooy, J.: Stochastic resonance as dithering. Phys. Rev. E 61, 233–236 (2000)

    Article  ADS  Google Scholar 

  34. McDonnell, M.D.: Is electrical noise useful? Proc. IEEE 99, 242–246 (2011)

    Article  Google Scholar 

  35. Gammaitoni, L.: Stochastic resonance and the dithering effect in threshold physical systems. Phys. Rev. E 52, 4691–4698 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial supports by the National Natural Science Foundation of China (Grant No 11672325), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, J., Zhang, J. et al. Improving the Stochastic Resonance in a Bistable System with the Bounded Noise Excitation. J Stat Phys 173, 1688–1697 (2018). https://doi.org/10.1007/s10955-018-2145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2145-3

Keywords

Navigation