Abstract
We introduce and test an algorithm that adaptively estimates large deviation functions characterizing the fluctuations of additive functionals of Markov processes in the long-time limit. These functions play an important role for predicting the probability and pathways of rare events in stochastic processes, as well as for understanding the physics of nonequilibrium systems driven in steady states by external forces and reservoirs. The algorithm uses methods from risk-sensitive and feedback control to estimate from a single trajectory a new process, called the driven process, known to be efficient for importance sampling. Its advantages compared to other simulation techniques, such as splitting or cloning, are discussed and illustrated with simple equilibrium and nonequilibrium diffusion models.
This is a preview of subscription content, access via your institution.





Change history
11 September 2018
The original version of this article unfortunately contained an error. The authors would like to correct the error with this erratum.
Notes
See [6] for a treatment of diffusions with multiplicative noise.
References
Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Stochastic Modeling Series. Chapman and Hall, London (1995)
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)
den Hollander, F.: Large Deviations. AMS, Providence, RI (2000). Fields Institute Monograph
Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Prog. Theor. Phys. Suppl. 184, 304–317 (2010)
Chetrite, R., Touchette, H.: Nonequilibrium microcanonical and canonical ensembles and their equivalence. Phys. Rev. Lett. 111, 120601 (2013)
Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Ann. Henri Poincaré 16(9), 2005–2057 (2015)
Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1–3), 1–69 (2009)
Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. 2007(07), P07023 (2007)
Harris, R.J., Touchette, H.: Large deviation approach to nonequilibrium systems. In: Klages, R., Just, W., Jarzynski, C. (eds.) Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, Reviews of Nonlinear Dynamics and Complexity, vol. 6, pp. 335–360. Wiley-VCH, Weinheim (2013)
Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. 2007(07), P07020 (2007)
Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: Dynamical first-order phase transition in kinetically constrained models of glasses. Phys. Rev. Lett. 98(19), 195702 (2007)
Hedges, L.O., Jack, R.L., Garrahan, J.P., Chandler, D.: Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009)
Espigares, C.P., Garrido, P.L., Hurtado, P.I.: Dynamical phase transition for current statistics in a simple driven diffusive system. Phys. Rev. E 87, 032115 (2013)
Aminov, A., Bunin, G., Kafri, Y.: Singularities in large deviation functionals of bulk-driven transport models. J. Stat. Mech. 2014(8), P08017 (2014)
Dean, T., Dupuis, P.: Splitting for rare event simulation: a large deviation approach to design and analysis. Stoch. Proc. Appl. 119(2), 562–587 (2009)
Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25(2), 417–443 (2007)
Aristoff, D., Lelièvre, T., Mayne, C.G., Teo, I.: Adaptive multilevel splitting in molecular dynamics simulations. ESAIM Proc 48, 215–225 (2015)
Grassberger, P.: Go with the winners: a general Monte Carlo strategy. Comp. Phys. Comm. 147(1–2), 64–70 (2002)
Giardina, C., Kurchan, J., Peliti, L.: Direct evaluation of large-deviation functions. Phys. Rev. Lett. 96(12), 120603 (2006)
Lecomte, V., Tailleur, J.: A numerical approach to large deviations in continuous time. J. Stat. Mech. 2007(03), P03004 (2007)
Bucklew, J.A.: Introduction to Rare Event Simulation. Springer, New York (2004)
Juneja, S., Shahabuddin, P.: Rare-Event Simulation Techniques: An Introduction and Recent Advances, vol. 13, pp. 291–350. Elsevier, Amsterdam (2006)
Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability. Springer, New York (2007)
Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 53(1), 291–318 (2002)
Heymann, M., Vanden Eijnden, E.: Pathways of maximum likelihood for rare events in nonequilibrium systems: application to nucleation in the presence of shear. Phys. Rev. Lett. 100, 140601 (2008)
Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65(12), 1770–1803 (2012)
Grafke, T., Grauer, R., Schäfer, T.: The instanton method and its numerical implementation in fluid mechanics. J. Phys. A 48(33), 333001 (2015)
Borkar, V.S., Juneja, S., Kherani, A.A.: Peformance analysis conditioned on rare events: an adaptive simulation scheme. Commun. Info. Syst. 3(4), 259–278 (2004)
Ahamed, T.P.I., Borkar, V.S., Juneja, S.: Adaptive importance sampling technique for Markov chains using stochastic approximation. Oper. Res. 54(3), 489–504 (2006)
Basu, A., Bhattacharyya, T., Borkar, V.S.: A learning algorithm for risk-sensitive cost. Math. Oper. Res. 33(4), 880–898 (2008)
Borkar, V.S.: Learning algorithms for risk-sensitive control. In: Proc. 19th Int. Symp. Math. Theory Networks and Systems, pp. 1327–1332 (2010)
Chetrite, R., Touchette, H.: Variational and optimal control representations of conditioned and driven processes. J. Stat. Mech. 2015(12), P12001 (2015)
Chauveau, D., Diebolt, J.: Estimation of the asymptotic variance in the CLT for Markov chains. Stoch. Models 19(4), 449–465 (2003)
Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Prob. Surv. 1, 20–71 (2004)
Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Stochastic Modelling and Applied Probability, vol. 22. Springer, New York (2012)
Ferré, G., Stoltz, G.: Error estimates on ergodic properties of discretized Feynman–Kac semigroups (2017). arXiv:1712.04013
Pavliotis, G.A.: Stochastic Processes and Applications. Springer, New York (2014)
Chernyak, V.Y., Chertkov, M., Bierkens, J., Kappen, H.J.: Stochastic optimal control as non-equilibrium statistical mechanics: calculus of variations over density and current. J. Phys. A 47(2), 022001 (2014)
Sekimoto, K.: Stochastic Energetics. Lect. Notes. Phys., vol. 799. Springer, New York (2010)
Bierkens, J., Chernyak, V.Y., Chertkov, M., Kappen, H.J.: Linear PDEs and eigenvalue problems corresponding to ergodic stochastic optimization problems on compact manifolds. J. Stat. Mech. 2016, 013206 (2016)
Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)
Chatelin, F.: Spectral Approximation of Linear Operators. Classics in Applied Mathematics. SIAM, Philadelphia (2011)
Gorissen, M., Vanderzande, C.: Finite size scaling of current fluctuations in the totally asymmetric exclusion process. J. Phys. A 44(11), 115005 (2011)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)
Rousset, M.: On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38(3), 824–844 (2006)
Nemoto, T., Bouchet, F., Jack, R.L., Lecomte, V.: Population-dynamics method with a multicanonical feedback control. Phys. Rev. E 93, 062123 (2016)
Nemoto, T., Hidalgo, E.G., Lecomte, V.: Finite-time and finite-size scalings in the evaluation of large-deviation functions: analytical study using a birth-death process. Phys. Rev. E 95, 012102 (2017)
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)
Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Cont. Opt. 30(4), 838–855 (1992)
Hartmann, C., Schütte, C.: Efficient rare event simulation by optimal nonequilibrium forcing. J. Stat. Mech. 2012(11), P11004 (2012)
Hartmann, C., Banisch, R., Sarich, M., Badowski, T., Schütte, C.: Characterization of rare events in molecular dynamics. Entropy 16(1), 350 (2014)
Zhang, W., Wang, H., Hartmann, C., Weber, M., Schütte, C.: Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Compd. 36(6), A2654–A2672 (2014)
Rohwer, C.M., Angeletti, F., Touchette, H.: Convergence of large deviation estimators. Phys. Rev. E 92, 052104 (2015)
Nemoto, T., Sasa, S.I.: Computation of large deviation statistics via iterative measurement-and-feedback procedure. Phys. Rev. Lett. 112, 090602 (2014)
Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications, 3rd edn. Springer, Berlin (1996)
Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)
Ciliberto, S., Joubaud, S., Petrosyan, A.: Fluctuations in out-of-equilibrium systems: from theory to experiment. J. Stat. Mech. 2010(12), P12003 (2010)
Tsobgni Nyawo, P., Touchette, H.: Large deviations of the current for driven periodic diffusions. Phys. Rev. E 94, 032101 (2016)
Mehl, J., Speck, T., Seifert, U.: Large deviation function for entropy production in driven one-dimensional systems. Phys. Rev. E 78, 011123 (2008)
Nemoto, T., Sasa, S.I.: Variational formula for experimental determination of high-order correlations of current fluctuations in driven systems. Phys. Rev. E 83, 030105 (2011)
Dupuis, P., Wang, H.: Dynamic importance sampling for uniformly recurrent Markov chains. Ann. Appl. Prob. 15(1A), 1–38 (2005)
Nemoto, T., Jack, R.L., Lecomte, V.: Finite-size scaling of a first-order dynamical phase transition: adaptive population dynamics and an effective model. Phys. Rev. Lett. 118, 115702 (2017)
Blanchet, J., Lam, H.: State-dependent importance sampling for rare-event simulation: an overview and recent advances. Surv. Oper. Res. Manag. Sci. 17(1), 38–59 (2012)
Kappen, H.J., Ruiz, H.C.: Adaptive importance sampling for control and inference. J. Stat. Phys. 162(5), 1244–1266 (2016)
Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33 (2001)
Lim, L.H., Weare, J.: Fast randomized iteration: diffusion Monte Carlo through the lens of numerical linear algebra. SIAM Rev. 59(3), 547–587 (2017)
Acknowledgements
We are grateful to Florian Angeletti for useful discussions in the initial phase of this work. G.F. is supported by the Labex Bezout. H.T. was supported by the National Research Foundation of South Africa (Grant Nos. 90322 and 96199) and Stellenbosch University (Project Funding for New Appointee). This research was also supported in part by the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program “Large deviation theory in statistical physics: Recent advances and future challenges” (Code: ICTS/Prog-ldt/2017/8).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ferré, G., Touchette, H. Adaptive Sampling of Large Deviations. J Stat Phys 172, 1525–1544 (2018). https://doi.org/10.1007/s10955-018-2108-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-018-2108-8
Keywords
- Large deviations
- Rare event simulation
- Diffusions
- Nonequilibrium processes