Journal of Statistical Physics

, Volume 173, Issue 3–4, pp 1028–1044 | Cite as

Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index

  • Paolo Barucca
  • Guido Caldarelli
  • Tiziano Squartini


Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the “most informative” nodes. Finally, we discuss the socio-economic implications of network information asymmetry.


Complex networks Shannon entropy Information theory Ranking algorithm 



PB and TS acknowledge support from: FET Project DOLFINS No. 640772 and FET IP Project MULTIPLEX No. 317532.


  1. 1.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Bloch, F., Jackson, M.O., Tebaldi, P.: Centrality measures in networks (2017). arXiv:1608.05845
  3. 3.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27, 55–71 (2005)CrossRefGoogle Scholar
  4. 4.
    Benzi, M., Klymko, C.: A matrix analysis of different centrality measures. SIAM J. Matrix Anal. Appl. 36, 686–706 (2013). CrossRefzbMATHGoogle Scholar
  5. 5.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Langville, A.N., Meyer, C.: Google’s PageRank and Beyond. Princeton University Press, Princeton (2006)CrossRefGoogle Scholar
  7. 7.
    Squartini, T., Cimini, G., Gabrielli, A., Garlaschelli, D.: Network reconstruction via density sampling. Appl. Netw. Sci. 2(3) (2017).
  8. 8.
    Zhang, Q., Meizhu, L., Yuxian, D., Yong, D.: Local structure entropy of complex networks (2014). arXiv:1412.3910v1
  9. 9.
    Bianconi, G., Pin, P., Marsili, M.: Assessing the relevance of node features for network structure. PNAS 106(28), 11433–11438 (2009). ADSCrossRefGoogle Scholar
  10. 10.
    Bianconi, G.: The entropy of randomized network ensembles. Europhys. Lett. 81(2), 28005 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12, 21–34 (2006). CrossRefzbMATHGoogle Scholar
  12. 12.
    Park, J., Newman, M.E.J.: The statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004). ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Squartini, T., Garlaschelli, D.: Maximum-Entropy Networks. Pattern Detection, Network Reconstruction and Graph Combinatorics. Springer Briefs in Complexity. Springer, Cham (2018)zbMATHGoogle Scholar
  14. 14.
    Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K., Kawamura, K.: Tech. Rep. of CCeP, Keio Future 3. Keio University, Tokyo (2003)Google Scholar
  15. 15.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRefGoogle Scholar
  16. 16.
    Martinez, N.D.: Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr. 61(4), 367–392 (1991)CrossRefGoogle Scholar
  17. 17.
    Fortunato, S., Boguna, M., Flammini, A., Menczer, F.: Approximating PageRank from in-Degree in Lecture Notes in Computer Science 4936. Springer, Berlin (2008)zbMATHGoogle Scholar
  18. 18.
    Gleditsch, K.S.: Expanded trade and GDP data. J. Confl. Resolut. 46, 712–724 (2002)CrossRefGoogle Scholar
  19. 19.
    Squartini, T., Fagiolo, G., Garlaschelli, D.: Randomizing world trade. I. A binary network analysis. Phys. Rev. E84, 046117 (2011).
  20. 20.
    Wittenberg-Moerman, R.: The role of information asymmetry and financial reporting quality in debt trading: evidence from the secondary loan market. J. Account. Econ. 46(2), 240–260 (2008)CrossRefGoogle Scholar
  21. 21.
    Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)CrossRefGoogle Scholar
  22. 22.
    Rogers, L.C.G., Veraart, L.A.M.: Failure and rescue in an interbank network. Manag. Sci. 59(4), 882–898 (2013)CrossRefGoogle Scholar
  23. 23.
    Barucca, P., Lillo, F.: The organization of the interbank network and how ECB unconventional measures affected the e-MID overnight market (2015). arXiv:1511.08068
  24. 24.
    Glasserman, P., Young, P.H.: Contagion in financial networks. J. Econ. Lit. 54(3), 779–831 (2016)CrossRefGoogle Scholar
  25. 25.
    Barucca, P., Bardoscia, M., Caccioli, F., D’Errico, M., Visentin, G., Battiston, S., Caldarelli, G.: Network valuation in financial systems (2016). arXiv:1606.05164

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Banking and FinanceUniversity of ZürichZurichSwitzerland
  2. 2.London Institute for Mathematical SciencesLondonUK
  3. 3.IMT School for Advanced StudiesLuccaItaly

Personalised recommendations