Tightness of the Ising–Kac Model on the Two-Dimensional Torus

Article
  • 7 Downloads

Abstract

We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717–812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising–Kac model near criticality and characterise the law of the limit as the \(\Phi ^4_2\) measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131–1138, 1995) on \(\mathbb {Z}^2\), but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.

Keywords

Kac potential Ising model Stochastic quantization Glauber dynamic 

Notes

Acknowledgements

We are grateful to H. Weber and P. Tsatsoulis for many discussions on the topic of this article. MH gratefully acknowledges financial support from the Leverhulme trust (Leadership Award) as well as the ERC via the consolidator Grant 615897: CRITICAL.

References

  1. 1.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)MATHGoogle Scholar
  2. 2.
    Bertini, L., Presutti, E., Rüdiger, B., Saada, E.: Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE. Teor. Veroyatnost. Primen. 38(4), 689–741 (1993)MathSciNetMATHGoogle Scholar
  3. 3.
    Cassandro, M., Marra, R., Presutti, E.: Corrections to the critical temperature in 2D Ising systems with Kac potentials. J. Stat. Phys. 78(3), 1131–1138 (1995)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fritz, J., Rüdiger, B.: Time dependent critical fluctuations of a one-dimensional local mean field model. Probab. Theory Relat. Fields 103(3), 381–407 (1995).  https://doi.org/10.1007/BF01195480 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Quantum Physics. A functional integral point of view, 2nd edn. Springer, New York (1987)CrossRefMATHGoogle Scholar
  7. 7.
    Gawędzki, K., Kupiainen, A.: Massless lattice \(\varphi ^4_4\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99(2), 197–252 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Hairer, M., Mattingly, J.: The strong Feller property for singular stochastic PDEs. (2016). arXiv:1610.03415
  9. 9.
    Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional mode. J. Math. Phys. 4, 216–228 (1963).  https://doi.org/10.1063/1.1703946 ADSCrossRefMATHGoogle Scholar
  10. 10.
    Lebowitz, J.L.: GHS and other inequalities. Commun. Math. Phys. 35, 87–92 (1974)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lebowitz, J.L., Penrose, O.: Rigorous treatment of the Van Der Waals–Maxwell theory of the liquid–vapor transition. J. Math. Phys. 7, 98–113 (1966).  https://doi.org/10.1063/1.1704821 ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising–Kac model to \(\Phi ^4_2\). Commun. Pure Appl. Math. 70(4), 717–812 (2017). arXiv:1410.1179.  https://doi.org/10.1002/cpa.21655
  13. 13.
    Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017). arXiv:1501.06191.  https://doi.org/10.1214/16-AOP1116
  14. 14.
    Nelson, E.: A quartic interaction in two dimensions. In: Mathematical Theory of Elementary Particles (Proceeding Conference, Dedham, 1965), pp. 69–73. M.I.T. Press, Cambridge (1966)Google Scholar
  15. 15.
    Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)MATHGoogle Scholar
  16. 16.
    Simon, B., Griffiths, R.B.: The \((\phi ^{4})_{2}\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Shen, H., Weber, H.: Glauber dynamics of 2D Kac–Blume–Capel model and their stochastic PDE limits. (2016). arXiv:1608.06556
  18. 18.
    Tsatsoulis, P., Weber, H.: Spectral gap for the stochastic quantization equation on the 2-dimensional torus. (2016). arXiv:1609.08447

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.University of WarwickCoventryUK

Personalised recommendations