Advertisement

Journal of Statistical Physics

, Volume 171, Issue 4, pp 521–542 | Cite as

The Fermi–Pasta–Ulam Problem and Its Underlying Integrable Dynamics: An Approach Through Lyapunov Exponents

  • G. Benettin
  • S. Pasquali
  • A. Ponno
Article
  • 110 Downloads

Abstract

FPU models, in dimension one, are perturbations either of the linear model or of the Toda model; perturbations of the linear model include the usual \(\beta \)-model, perturbations of Toda include the usual \(\alpha +\beta \) model. In this paper we explore and compare two families, or hierarchies, of FPU models, closer and closer to either the linear or the Toda model, by computing numerically, for each model, the maximal Lyapunov exponent \(\chi \). More precisely, we consider statistically typical trajectories and study the asymptotics of \(\chi \) for large N (the number of particles) and small \(\varepsilon \) (the specific energy E / N), and find, for all models, asymptotic power laws \(\chi \simeq C\varepsilon ^a\), C and a depending on the model. The asymptotics turns out to be, in general, rather slow, and producing accurate results requires a great computational effort. We also revisit and extend the analytic computation of \(\chi \) introduced by Casetti, Livi and Pettini, originally formulated for the \(\beta \)-model. With great evidence the theory extends successfully to all models of the linear hierarchy, but not to models close to Toda.

Keywords

Fermi-Pasta-Ulam Toda model Lyapunov exponents Thermodynamic limit 

Notes

Acknowledgements

We are indebted to Roberto Livi (Firenze) and to Luigi Galgani and Andrea Carati (Milano) for helpful stimulating discussions.

References

  1. 1.
    Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems. Los-Alamos Internal Report, Document LA-1940 (1955) (First published in: Enrico Fermi Collected Papers, vol. 2, The University of Chicago Press, Chicago, and Accademia Nazionale dei Lincei, Roma, 1965, pp. 977–988. The paper was later reprinted in Lect. Appl. Math. 15, 143–156 (1974) and inside ref. [14])Google Scholar
  2. 2.
    Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23, 501–506 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    Toda, M.: Mechanics and statistical mechanics of nonlinear chains. J. Phys. Soc. Jpn. Suppl. 26, 109–111 (1969)ADSGoogle Scholar
  5. 5.
    Toda, M.: Waves in nonlinear lattice. Progr. Teor. Phys. Suppl. 45, 174–200 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B 9, 1921–1923 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flaschka, H.: The Toda lattice. II. Existence of integrals. Phys. Rev. B 9, 1924–1925 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dubrovin, B.A.: On universality of critical behavior in Hamiltonian PDEs. In: Buchstaber, V.M., Krichever, I.M. (eds.). Geometry, Topology, and Mathematical Physics: S.P. Novikov’s Seminar, 2006–2007. AMS Translations Series 2, vol. 24, Providence, RI (See Sect. 4.3.) (2008)Google Scholar
  9. 9.
    Ferguson, E.E., Flashka, H., McLaughlin, D.W.: Nonlinear Toda modes for the Toda chain. J. Comput. Phys. 45, 157–209 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cerruti-Sola, M., Pettini, M., Cohen, E.G.D.: Phase space geometry and stochasticity thresholds in Hamiltonian dynamics. Phys. Rev. E 62, 6078–6081 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Benettin, G., Ponno, A.: Time-scales to equipartition in the Fermi-Pasta-Ulam problem: finite-size effects and thermodynamic limit. J. Stat. Phys. 144, 793–812 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Benettin, G., Christodoulidi, H., Ponno, A.: The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J. Stat. Phys. 152, 195–212 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Campbell, D.K., Rosenau, P., Zaslavsky, G.M.: Chaos focus issue: the Fermi-Pasta-Ulam problem-the first 50 years. Chaos 15, 015101 (2005)Google Scholar
  14. 14.
    Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys. vol. 728. Springer, Berlin (2008)Google Scholar
  15. 15.
    Tuck, J.L., Menzell, M.T.: The superperiod of the nonlinear weighted string (FPU) problem. Adv. Math. 9, 399–407 (1972) (results indeed go back to 1961 (see Ulam’s presentation of the FPU paper in [1]))Google Scholar
  16. 16.
    Izrailev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Sov. Phys. Dokl. 11, 30–34 (1966)ADSzbMATHGoogle Scholar
  17. 17.
    Izrailev, F.M., Khisamutdinov, A.I., Chirikov, B.V.: Numerical experiments with a chain of coupled anharmonic oscillators. Report 252, Institute of Nuclear Physics, Novosibirsk, URSS (1968) (English translation: LA 4440 TR, Los Alamos (1970))Google Scholar
  18. 18.
    Bocchieri, P., Scotti, A., Bearzi, B., Loinger, A.: Anharmonic chain with Lennard-Jones interaction. Phys. Rev. A 2, 2013–2019 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    Galgani, L., Scotti, A.: Recent progress in classical nonlinear dynamics. Rivista Nuovo Clim. 2, 189–209 (1972)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Fucito, E., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., Vulpiani, A.: Approach to equilibrium in a chain of nonlinear oscillators. J. Phys. 43, 707–713 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Relaxation to different stationary states in the Fermi-Pasta-Ulam model. Phys. Rev. A 28, 3544–3552 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    Berchialla, L., Galgani, L., Giorgilli, A.: Localization of energy in FPU chains. DCDS 11, 855–866 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Berchialla, L., Giorgilli, A., Paleari, S.: Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A 321, 167–172 (2004)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Carati, A., Galgani, L., Giorgilli, A., Paleari, S.: FPU phenomenon for generic initial data. Phys. Rev. E 76, 022104/1-4 (2007)Google Scholar
  25. 25.
    Benettin, G., Livi, R., Ponno, A.: The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135, 873–893 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Casartelli, M., Diana, E., Galgani, L., Scotti, A.: Numerical computations on a stochastic parameter related to the Kolmogorov entropy. Phys. Rev. A 13, 1921–1925 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    Benettin, G., Lo Vecchio, G., Tenenbaum, A.: Stochastic transition in two-dimensional Lennard-Jones system. Phys. Rev. A 22, 1709–1719 (1980)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Pettini, M., Landolfi, M.: Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics. Phys. Rev. A 41, 768–783 (1990)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Pettini, M., Cerruti-Sola, M.: Strong stochasticity threshold in nonlinear large Hamiltonian systems: effect on mixing times. Phys. Rev. A 44, 975–987 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Casetti, L., Cerruti-Sola, M., Pettini, M., Cohen, E.G.D.: The Fermi-Pasta-Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems. Phys. Rev. E 55, 6566–6574 (1997)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Casetti, L., Livi, R., Pettini, M.: Gaussian model for chaotic instability of Hamiltonian flows. Phys. Rev. Lett. 74, 375–378 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Casetti, L., Clementi, C., Pettini, M.: Riemannian theory of Hamiltonian chaos and Lyapunov exponents. Phys. Rev. E 54, 5969–5984 (1996)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Lichtenberg, A.J., Livi, R., Pettini, M., Ruffo, S.: Dynamics of oscillator chains. In: The Fermi-Pasta-Ulam Problem, pp. 21–121. Springer, Berlin (2007)Google Scholar
  34. 34.
    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near to the identity symplectic mappings, with application to symplectic integration algorithms. J. Stat. Phys. 74, 1117–1144 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hairer, E.: Backward analysis of numerical integrators and symplectic methods. Ann. Numer. Math. 1, 107–132 (1994)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  38. 38.
    Paleari, S., Penati, T.: Numerical methods and results in the FPU problem. In: Gallavotti, G. (ed.) The Fermi–Pasta–Ulam Problem. Lect. Notes Phys., vol. 728, pp. 239–282. Spriger, New York (2008)Google Scholar
  39. 39.
    Benettin, G., Ponno, A.: On the numerical integration of FPU-like systems. Physica D 240, 568–573 (2011)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Benettin, G., Galgani, L., Strelcyn, J.-M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them. Part 1: theory. Meccanica 15, 9 (1980)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them. Part 2: numerical applications. Meccanica 15, 21 (1980)CrossRefzbMATHGoogle Scholar
  43. 43.
    Sinai, Y.G.: A remark concerning the thermodynamical limit of the Lyapunov spectrum. Int. J. Bifurc. Chaos 6, 1137–1142 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Giorgilli, A., Paleari, S., Penati, T.: Local chaotic behavior in the Fermi-Pasta-Ulam system. DCDS-B 5, 991–1004 (2005)CrossRefzbMATHGoogle Scholar
  45. 45.
    Lukes-Gerakopoulos, G., Voglis, N., Efthymiopoulos, C.: The production of Tsallis entropy in the limit of weak chaos and a new indicator of chaoticity. Physica A 387, 1907–1925 (2008)ADSMathSciNetCrossRefGoogle Scholar
  46. 48.
    Van Kampen, N.G.: Stochastic differential equations. Phys. Rep. 24, 171–228 (1976)ADSMathSciNetCrossRefGoogle Scholar
  47. 49.
    Lebowitz, J.L., Percus, J.K., Verlet, L.: Ensemble dependence of fluctuations with application to machine computations. Phys. Rev. 153, 250–254 (1967)ADSCrossRefGoogle Scholar
  48. 50.
    Ablowitz, M.J., Fokas, A.S.: Complex Variables, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Tullio Levi-Civita”Università di PadovaPadovaItaly
  2. 2.Dipartimento di Matematica e FisicaUniversità di Roma TreRomeItaly

Personalised recommendations