Advertisement

Journal of Statistical Physics

, Volume 171, Issue 2, pp 288–344 | Cite as

Non-equilibrium Quasi-Chemical Nucleation Model

  • Yuriy E. Gorbachev
Article

Abstract

Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778–3790, 2010; Shock Waves 23:635–648, 2013; Shock Waves 27:333–374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical–chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

Keywords

Kinetic theory Non-equilibrium effects Reaction rates Nucleation rate 

References

  1. 1.
    Savel’ev, A.M., Starik, A.M.: An improved model of homogeneous nucleation for high supersaturation conditions: aluminum vapor. Royal Society of Chemistry. Phys. Chem. Chem. Phys.  https://doi.org/10.1039/c6cp04080b (2016)
  2. 2.
    Frezzotti, A., Barbante, P.: Kinetic theory aspects of non-equilibrium liquid-vapor flows. Mech. Eng. Rev. 4, 1–14 (2017)CrossRefGoogle Scholar
  3. 3.
    Anisimova, M.P., Fominykha, E.G., Akimova, S.V., Hopke, P.K.: Vaporgas/liquid nucleation experiments: a review of the challenges. Aerosol Sci. 40, 733–746 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Kelton, K.F., Frenkel, D.: Preface: special topic on nucleation: new concepts and discoveries. J. Chem. Phys. 145, 211501–1 (2016).  https://doi.org/10.1063/1.4967522
  5. 5.
    Abraham, F.F.: Homogeneous Nucleation Theory, p. 263. Academic Press, New York (1974)Google Scholar
  6. 6.
    Sternin, L.E.: Fundamentals of Gasdynamics of Two-phase Nozzle Flows. Mashinostroenie, Moscow (1974). (in Russian)Google Scholar
  7. 7.
    Gordietz, B.F., Shelepin, L.A.: Shmotkin, YuS: Kinetics of isothermal homogeneous-condensation processes. J. Sov. Laser Res. 7, 588–616 (1986)CrossRefGoogle Scholar
  8. 8.
    Cao, B.-Y., Xie, J.-F., Sazhin, S.S.: Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. J. Chem. Phys. 134, 164309 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Borner, A., Li, Z., Levin, D.A.: DSMC study of homogeneous condensation of water in supersonic expansions. AIP Conf. Proc. 1501, 565–572 (2012).  https://doi.org/10.1063/1.4769592
  10. 10.
    Sazhin, S.S., Xie, J.-F., Shishkova, I.N., Elwardany, A.E., Heikal, M.R.: A kinetic model of droplet heating and evaporation: effects of inelastic collisions and a non-unity evaporation coefficient. Int. J. Heat Mass Transfer 56, 525–537 (2013)CrossRefGoogle Scholar
  11. 11.
    Schenter, G.K., Kathmann, S.M., Garrett, B.C.: Dynamical nucleation theory: a new molecular approach to vapor-liquid nucleation. Phys. Rev. Lett. 82, 3484–3487 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Zhukhovitskii, D.I.: Size-corrected theory of homogeneous nucleation. J. Chem. Phys. 101, 5076–5080 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Artyukhin, A.S., Egorov, B.V., Zababurin, E.A., Koshcheev, A.V., Markachev, Y.E., Plekhanov, E.A., Ufimtsev, I.S., Hlopkov, A.Y., Chugreev, A.L.: Formation kinetics of the ultra-light fraction of neutral and charged clusters in gas-dynamic flows of vehicles. Khimicheskaia Fizika 23, 28–46 (2004). (in Russian)Google Scholar
  14. 14.
    Egorov, B.V., Markachev, Y.E.: Correlation of the quasi-chemical cluster nucleation model when compared with the experimental data. Khimicheskaia Fizika 25, 77–83 (2006). (in Russian)Google Scholar
  15. 15.
    Egorov, B.V., Markachev, Y.E., Plekhanov, E.A.: Quasi-chemical model for water vapour nucleation. Khimicheskaia Fizika 25, 61–70 (2006). (in Russian)Google Scholar
  16. 16.
    Artyukhin, A.S., Egorov, B.V., Markachev, Y.E., Plekhanov, E.A., Ozarnov, I.A.: Quasi-chemical cluster model approach to gas precondensation stage. In: Proceedings of 25th International Symposium on Rarefied Gas Dynamics Saint-Petersburg, July 22–26 2006, pp. 633–638. Publishing House of the Siberian Brach of the Russian Academy of Sciences, Novosibirsk (2007)Google Scholar
  17. 17.
    Shneidman, V.A.: Size-distribution for new phase particles under nonstationary condensation of the supercooled gas. Sov. Phys. Tech. Phys. 32, 76–81 (1987)Google Scholar
  18. 18.
    Gorbachev, Y.E., Nikitin, I.S.: Evolution of cluster size distributions for nucleation under rapid variation of gasdynamic processes. J. Tech. Phys. 70, 28–38 (2000)Google Scholar
  19. 19.
    Filipponi, A., Giammatteo, P.: Kinetic Monte Carlo simulation of the classical nucleation process. J. Chem. Phys. 145, 211913-1–211913-13 (2016).  https://doi.org/10.1063/1.4962757
  20. 20.
    Briehe, B., Urbassek, H.M.: Monte Carlo simulation of growth and decay processes in a cluster aggregation source. J. Vac. Sci. Thechnol. A 17, 256–265 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Zeifman, M.I., Garrison, B.J., Zhigilei, L.V.: Combined molecular dynamics–direct simulation Monte Carlo computation study of laser ablation plume evolution. J. Appl. Phys. 92, 2181–2193 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Itina, T.E., Gouriet, K., Zhigilei, L.V., Noel, S., Hermann, J., Sentis, M.: Mechanisms of small clusters production by short and ultra-short pulse laser ablation. Appl. Surf. Sci. 253, 7656–7661 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Bykov, N.Y., Lukianov, G.A.: The direct simulation Monte-Carlo of cluster formation processes in laser plume. In: Ivanov, M., Rebrov, A. (eds.) Proceedings of 25th Int. Symp. on RGD, pp. 645–650. Publishing House of SB RAS, Novosibirsk (2007)Google Scholar
  24. 24.
    Bykov, N.Y.: Modelling of condensation at spherical expansion of water vapor into vacuum. Thermophys. Aeromech. 16, 177–187 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Jansen, R., Wysong, I., Gimelshein, S.F., Zeifman, M.I., Buck, U.: Non-equilibrium numerical model of homogeneous condensation in argon and water expansions. J. Chem. Phys. 132, 244105 (2010).  https://doi.org/10.1063/1.3447379
  26. 26.
    Schenter, G.K., Kathmann, S.M., Garrett, B.C.: Variational transition state theory of vapor phase nucleation. J. Chem. Phys. 110, 7951–7959 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Schenter, G.K., Kathmann, S.M., Garrett, B.C.: Dynamical benchmarks of the nucleation kinetics of water. J. Chem. Phys. 116, 4275–4280 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Pechukas, P.: Dynamics of Molecular Collisions, Part B. W.H. Miller (ed.) Plenum, New York (1976)Google Scholar
  29. 29.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Gas-dynamic equations for spatially inhomogeneous gas mixtures with internal degrees of freedom. I. General theory. Appl. Math. Model. 34, 3778–3790 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Robinson, P.J., Holbrook, K.A.: Unimolecular Reactions, p. 372. Wiley-Interscience, London (1972)Google Scholar
  31. 31.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Gas-dynamic equations for reactive gas mixtures: problems and solutions. IEEE.  https://doi.org/10.1109/POLYAKHOV.2015.7106731 (2015)
  32. 32.
    Gorbachev, Y.E.: Renormalized reaction and relaxation rates. AIP Conf. Proc. 1738, 090002 (2016).  https://doi.org/10.1063/1.4951851
  33. 33.
    Prigogine, I., Xhrouet, E.: On the perturbation of Maxwell distribution function by chemical reactions in a gas. Physica 15, 913–932 (1949)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Gas-dynamic equations for spatially inhomogeneous gas mixtures with internal degrees of freedom. II. General representation for one-temperature reaction rates. Appl. Math. Mod. 37(7), 5304–53014 (2012)Google Scholar
  35. 35.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Chemical reactions in non-equilibrium gas mixtures and mass action law breakdown. Shock Waves 23, 635–648 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Reaction rates and reaction rate constant conception. One-temperature case. In: 28th International Symposium on Rarefied Gas Dynamics. AIP Conference Proceedings, vol. 1501, pp. 107–114. American Institute of Physics, New York (2012)Google Scholar
  37. 37.
    Gorbachev, Y.E.: Gas-dynamic equations for spatially inhomogeneous gas mixtures with internal degrees of freedom, III. Renormalized reaction rates. Appl. Math. Mod. 40, 10131–10152 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Stupochenko, Y.V., Losev, S.A., Osipov, A.I.: Relaxation in Shock Waves. Springer, New York (1967)CrossRefGoogle Scholar
  39. 39.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Impact of vibrational non-equilibrium on chemical reaction rates. In: Physical-Chemical Kinetics in Gas Dynamics, vol. 12. http://www.chemphys.edu.ru/pdf/2011-06-16-001.pdf (2011)
  40. 40.
    Kolesnichenko, E.G., Gorbachev, Y.E.: Two-temperature reaction and relaxation rates. Shock Waves 27, 333–374 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Gorbachev, Y.E.: Renormalized reaction and relaxation rates for harmonic oscillator model. AIP Conf. Proc. 1863, 110002 (2017).  https://doi.org/10.1063/1.4992287
  42. 42.
    Kolesnichenko, E.G.: A method for deriving hydrodynamic equations for complicated systems. Fluid Dyn. 16, 400–407 (1981)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases, p. 579. North-Holland Pub. Co., Amsterdam (1972)Google Scholar
  44. 44.
    Zhong, J., Zeifman, M.I., Levin, D.A.: Kinetic model of condensation in a free argon expanding jet. J. Thermophys. Heat Transf. 20, 41–51 (2006)CrossRefGoogle Scholar
  45. 45.
    Rao, B.K., Smirnov, B.M.: Cluster growth in expanding copper vapour. Mater. Phys. Mech. 5, 1–10 (2002)Google Scholar
  46. 46.
    Bykov, N., Gorbachev, Y.: Mathematical models of water nucleation process for the direct simulation Monte Carlo method. Appl. Math. Comput. 296, 215–232 (2017)MathSciNetGoogle Scholar
  47. 47.
    Gafner, S.L., Redel, L.V., Gafner, Y.Y.: Molecular-dynamics simulation of the heat capacity for nickel and copper clusters: shape and size effects. J. Exp. Theor. Phys. 114, 428–439 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Saeedian, M., Mahjour-Shafiei, M., Shojaee, E., Mohammadizadeh, M.R.: Specific heat capacity of TiO\(_{2}\) nanoparticles. arXiv:1307.7555
  49. 49.
    Gafner, Y.Y., Gafnera, S.L., Zamulina, I.S., Redela, L.V., Samsonov, V.M.: Possible mechanisms of increase in heat capacity of nanostructured metals. Phys. Solid State 55, 2142–2149 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Landau, L.D., Livshitz, E.M.: Statistical Physics, vol. 5, 3rd edn. Butterworth-Heinemann, Oxford (1980)Google Scholar
  51. 51.
    Sunden, A.E.K., Stochkel, K., Panja, S., Kadhane, U., Hvelplund, P., Brondsted, N.S., Zettergren, H., Dynefors, B., Hansen, K.: Heat capacities of freely evaporating charged water clusters. J. Chem. Phys. 130, 224308 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Xin, X.: Goddard William A. III: bonding properties of the water dimer: a comparative study of density functional theories. J. Phys. Chem. A 108, 2305–2313 (2004)Google Scholar
  53. 53.
    Mo, O., Yanez, M., Elguero, J.: Cooperative (nonpairwise) effects in water trimers: an ab initio molecular orbital study. J. Chem. Phys. 97, 6628–6638 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    Frantz, D.D.: Magic numbers for classical Lennard-Jones cluster heat capacities. arXiv:chem-ph/9406001v1
  55. 55.
    Hill, P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25, 593–620 (1966)ADSCrossRefGoogle Scholar
  56. 56.
    Gorbachev, Y.E.: On nonlinear effects in condensation models with continuous and discrete descriptions of nucleation. Tech. Phys. 48, 655–660 (2003)CrossRefGoogle Scholar
  57. 57.
    Shneidman, V.A.: Transient critical flux in nucleation theory. Phys. Rev. A 44, 2609–2611 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    Li, Z., Zhong, J., Levin, D.A., Garrison, B.J.: Kinetic nucleation model for free expanding water condensation plume simulations. J. Chem. Phys. 130, 174309 (2009).  https://doi.org/10.1063/1.3129804

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Coddan Technologies LLCSt. PetersburgRussia

Personalised recommendations