Skip to main content
Log in

Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in \( \epsilon \) only if \( \theta = {\rm O}\left( \epsilon \right) \) in which \( \epsilon \) is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 2, 155–161 (1951)

    Article  Google Scholar 

  2. He, X., Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Luo, L.-S., Girimaji, S.: Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Phys. Rev. E 67, 1–11 (2003)

    Google Scholar 

  4. Mei, R., Luo, L.-S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)

    Article  ADS  MATH  Google Scholar 

  5. Li, L., Mei, R., Klausner, J.F.: Boundary conditions for thermal lattice Boltzmann equation method. J. Comput. Phys. 237, 366–395 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Li, L., Chen, C., Mei, R., Klausner, J.F.: Conjugate heat and mass transfer in the lattice Boltzmann equation method. Phys. Rev. E 89, 043308 (2014)

    Article  ADS  Google Scholar 

  7. Li, L., Mei, R., Klausner, J.F.: Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9. Int. J. Heat Mass Transfer 108, 41–62 (2017)

    Article  Google Scholar 

  8. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. EPL 17, 479 (1992)

    Article  ADS  MATH  Google Scholar 

  9. Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992)

    Article  ADS  Google Scholar 

  10. Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  ADS  Google Scholar 

  11. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008)

    MathSciNet  Google Scholar 

  12. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time Lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  13. Freed, D.M.: Lattice-Boltzmann method for macroscopic porous media modeling. Int. J. Modern Phys. C 9, 1491–1503 (1998)

    Article  ADS  Google Scholar 

  14. Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 1–9 (2002)

    Google Scholar 

  15. Ginzburg, I.: Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion. Phys. Rev. E 77, 1–12 (2008)

    Article  Google Scholar 

  16. Walsh, S.D.C., Burwinkle, H., Saar, M.O.: A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput. Geosci. 35, 1186–1193 (2009)

    Article  ADS  Google Scholar 

  17. Zhu, J., Ma, J.: An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Adv. Water Resour. 56, 61–76 (2013)

    Article  ADS  Google Scholar 

  18. Yoshida, H., Hayashi, H.: Transmission-reflection coefficient in the lattice Boltzmann method. J. Stat. Phys. 155, 277–299 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Thorne, D.T., Sukop, M.C.: Lattice Boltzmann model for the elder problem. Dev. Water Sci. 55, 1549–1557 (2004)

    Article  Google Scholar 

  20. Ginzburg, I.: Comment on “An improved gray Lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: intrinsic links between LBE Brinkman schemes. Adv. Water Resour. (2014). https://doi.org/10.1016/j.advwatres.2013.03.001

    Google Scholar 

  21. Junk, M., Yang, Z.: Asymptotic analysis of lattice Boltzmann boundary conditions. J. Stat. Phys. 121, 3–35 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Junk, M., Klar, A., Luo, L.-S.: Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210, 676–704 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Buick, J., Greated, C.: Gravity in a lattice Boltzmann model. Phys. Rev. E. 61, 5307–5320 (2000)

    Article  ADS  Google Scholar 

  24. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Luo, L.-S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83, 056710 (2011)

    Article  ADS  Google Scholar 

  26. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 1–6 (2002)

    MATH  Google Scholar 

  27. Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191–1251 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Silva, G., Semiao, V.: A study on the inclusion of body forces in the lattice Boltzmann BGK equation to recover steady-state hydrodynamics. Physica A 390, 1085–1095 (2011)

    Article  ADS  Google Scholar 

  29. Silva, G., Semiao, V.: First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form. J. Fluid Mech. 698, 282–303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. He, X., Zou, Q., Luo, L.-S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87, 115–136 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zou, Q., Hou, S., Doolen, G.D.: Analytical solutions of the lattice Boltzmann BGK model. J. Stat. Phys. 81, 319–334 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Martys, N., Shan, X., Chen, H.: Evaluation of the external force term in the discrete Boltzmann equation. Phys. Rev. E 58, 6865 (1998)

    Article  ADS  Google Scholar 

  34. Luo, L.-S.: Theory of the lattice Boltzmann method: lattice Boltzmann models for non-ideal gases. Phys. Rev. E 62, 4982 (2001)

    Article  ADS  Google Scholar 

  35. D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. A 360, 437–451 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the U.S. Department of Energy, ARPA-E, under Award No. DEAR0000184, and the U.S. Department of Energy, SunShot Initiative, under Award No. DE-EE0006534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Like Li.

Appendices

Appendix A: Chapman–Enskog Analysis of GLBE Schemes to Recover Darcy-Extended Brinkman Equation

By introducing the expansion Eq. (15) and

$$ f_{\alpha } \left( {{\mathbf{x}} + {\mathbf{e}}_{\alpha } \Delta t,t + \Delta t} \right) = \sum\limits_{n = 0}^{\infty } {\frac{{ \epsilon^{n} }}{n!}{\mathbf{D}}^{n} f_{\alpha }^{\left( n \right)} } \left( {{\mathbf{x}},t} \right), $$
(A-1)

where D = e α ·∇ (omitting the time dependency for steady-state condition), we can rewrite the WBS scheme proposed by Walsh et al. [16] including a body force term

$$ \begin{aligned} f_{\alpha } ({\mathbf{x}} + {\mathbf{e}}_{\alpha } \Delta t,t + \Delta t) - f_{\alpha } ({\mathbf{x}},t) = - \left( {1 - \theta } \right)\left( {{\mathbf{M}}^{ - 1} {\mathbf{SM}}} \right)_{\alpha \beta } \left[ {f_{\beta } \left( {{\mathbf{x}},t} \right) - f_{\beta }^{eq} \left( {{\mathbf{x}},t} \right)} \right] + \left( {1 - \theta } \right)\Delta tF_{\alpha } - \theta \left[ {f_{\alpha } \left( {{\mathbf{x}},t} \right) - f_{{\bar{\alpha }}} \left( {{\mathbf{x}},t} \right)} \right] \hfill \\ \end{aligned} $$
(A-2)

in the consecutive orders of the parameter \( \epsilon \) as follows:

$$ {\rm O}\left( { \epsilon^{0} } \right):f_{\alpha }^{\left( 0 \right)} {=} f_{\alpha }^{eq} , $$
(A-3a)
$$ {\rm O}\left( { \epsilon^{1} } \right):D_{1\alpha } f_{\alpha }^{\left( 0 \right)} {=} - \frac{1}{\Delta t}\left( {{\mathbf{M}}^{ - 1} {\mathbf{SM}}} \right)_{\alpha \beta } f_{\beta }^{\left( 1 \right)} - \frac{{\theta_{1} }}{\Delta t}\left( {f_{\alpha }^{\left( 0 \right)} - f_{{\bar{\alpha }}}^{\left( 0 \right)} } \right) + F_{1\alpha } , $$
(A-3b)
$$ {\rm O}\left( { \epsilon^{2} } \right):\left( {{\mathbf{M}}^{ - 1} \left( {{\mathbf{I}} - \frac{{\mathbf{S}}}{2}} \right){\mathbf{M}}} \right)_{\alpha \beta } D_{1\beta } f_{\beta }^{\left( 1 \right)} + \frac{\Delta t}{2}D_{1\alpha } F_{1\alpha } = - \frac{1}{\Delta t}\left( {{\mathbf{M}}^{ - 1} {\mathbf{SM}}} \right)_{\alpha \beta } \left( {f_{\beta }^{\left( 2 \right)} } \right) + \frac{{\theta_{1} }}{\Delta t}\left( {{\mathbf{M}}^{ - 1} {\mathbf{SM}}} \right)_{\alpha \beta } \left( {f_{\beta }^{\left( 1 \right)} } \right) - \frac{{\theta_{1} }}{\Delta t}\left( {f_{\alpha }^{\left( 1 \right)} - f_{{\bar{\alpha }}}^{\left( 1 \right)} } \right) - \theta_{1} F_{1\alpha } + \frac{1}{2}\frac{\partial }{{\partial x_{1i} }}D_{1\alpha } \left[ {\theta_{1} \left( {f_{\alpha }^{\left( 0 \right)} - f_{{\bar{\alpha }}}^{\left( 0 \right)} } \right)} \right]. $$
(A-3c)

where D1α = e α ·∇1 and \( F_{1\alpha } = \omega_{\alpha } \left[ {A + B\frac{{{\mathbf{e}}_{\alpha } \cdot {\mathbf{F}}_{1} }}{{c_{s}^{2} }} + BC\frac{{\left( {{\mathbf{e}}_{\alpha } {\mathbf{e}}_{\alpha } - c_{s}^{2} {\mathbf{I}}} \right):\left( {{\mathbf{uF}}_{1} + {\mathbf{F}}_{1} {\mathbf{u}}} \right)}}{{2c_{s}^{4} }}} \right] \) with F1 = (Fx1Fy1) in 2-D space.

The transformation matrix M is used to map the distribution function f α and its equilibrium f eq α in the velocity space onto the moment space (see Ref. [35] for details):

$$ {\mathbf{m}}:\, = \,{\mathbf{M}}f_{\alpha } \, = \,\left( {\rho , e, \varepsilon , \rho u_{x} \, - \,nF_{x} \Delta t, q_{x} , \rho u_{y} \, - \,nF_{y} \Delta t, q_{y} , p_{xx} , p_{xy} } \right)^{T} , $$
(A-4a)
$$ {\mathbf{m}}^{eq} : = {\mathbf{M}}f_{\alpha }^{eq} = \left( {\rho , - 2\rho ,\rho ,\rho u_{x} , - \rho u_{x} ,\rho u_{y} , - \rho u_{y} ,0,0} \right)^{T} . $$
(A-4b)

Similarly, the projection of its opposite component \( f_{{\bar{\alpha }}} \) in the moment space can be found as

$$ {\bar{\mathbf{m}}}: = {\mathbf{M}}f_{{\bar{\alpha }}} = \left( {\rho ,e,\varepsilon , - \rho u_{x} + nF_{x} \Delta t, - q_{x} , - \rho u_{y} + nF_{y} \Delta t, - q_{y} ,p_{xx} ,p_{xy} } \right)^{T} . $$
(A-4c)

The corresponding equations of consecutive orders in the moment space can be written as

$$ {\rm O}\left( { \epsilon^{0} } \right):{\mathbf{m}}^{\left( 0 \right)} {=} {\mathbf{m}}^{eq} , $$
(A-5a)
$$ {\rm O}\left( { \epsilon^{1} } \right):{\tilde{\mathbf{D}}}_{1} {\mathbf{m}}^{\left( 0 \right)} {=} - \frac{1}{\Delta t}{\mathbf{Sm}}^{\left( 1 \right)} - \frac{{\theta_{1} }}{\Delta t}\left( {{\mathbf{m}}^{\left( 0 \right)} - {\bar{\mathbf{m}}}^{\left( 0 \right)} } \right) + {\mathbf{MF}}_{1} , $$
(A-5b)
$$ {\rm O}\left( { \epsilon^{2} } \right):{\tilde{\mathbf{D}}}_{1} {\tilde{\mathbf{S}}\mathbf{m}}^{\left( 1 \right)} + \frac{\Delta t}{2}{\tilde{\mathbf{D}}}_{1} {\mathbf{MF}}_{1} = - \frac{1}{\Delta t}{\mathbf{Sm}}^{\left( 2 \right)} + \frac{{\theta_{1} }}{\Delta t}{\mathbf{Sm}}^{\left( 1 \right)} - \frac{{\theta_{1} }}{\Delta t}\left( {{\mathbf{m}}^{\left( 1 \right)} - {\bar{\mathbf{m}}}^{\left( 1 \right)} } \right) - \theta_{1} {\mathbf{MF}}_{1} + \frac{1}{2}{\tilde{\mathbf{D}}}_{1} \left[ {\theta_{1} \left( {{\mathbf{m}}^{\left( 0 \right)} - {\bar{\mathbf{m}}}^{\left( 0 \right)} } \right)} \right], $$
(A-5c)

where \( {\tilde{\mathbf{D}}}_{1} = {\mathbf{MD}}_{1} {\mathbf{M}}^{ - 1} \), D1 = ∇1idiag(e0ie1i, …, e8i) and \( {\tilde{\mathbf{S}}} = {\mathbf{I}} - {\mathbf{S}}/2 \).

Based on Eqs. (A-4) and (A-5a), we find

$$ {\mathbf{m}}^{\left( 1 \right)} = \left( {0,e^{\left( 1 \right)} ,\varepsilon^{\left( 1 \right)} , - n\Delta tF_{x1} ,q_{x}^{\left( 1 \right)} , - n\Delta tF_{y1} ,q_{y}^{\left( 1 \right)} ,p_{xx}^{\left( 1 \right)} ,p_{xy}^{\left( 1 \right)} } \right). $$
(A-6)

Thus Eq. (A-5b) can be rewritten as

$$ \frac{\partial }{{\partial x_{1} }}\left( {\begin{array}{*{20}c} {\rho u_{x} } \\ 0 \\ { - \rho u_{x} } \\ p \\ { - \rho /3} \\ 0 \\ 0 \\ {2\rho u_{x} /3} \\ {\rho u_{y} /3} \\ \end{array} } \right) + \frac{\partial }{{\partial y_{1} }}\left( {\begin{array}{*{20}c} {\rho u_{y} } \\ 0 \\ { - \rho u_{y} } \\ 0 \\ 0 \\ p \\ { - \rho /3} \\ { - 2\rho u_{y} /3} \\ {\rho u_{x} /3} \\ \end{array} } \right) = - \frac{1}{\Delta t}\left( {\begin{array}{*{20}c} 0 \\ {s_{e} e^{\left( 1 \right)} } \\ {s_{\varepsilon } \varepsilon^{\left( 1 \right)} } \\ { - s_{j} n\Delta tF_{x1} } \\ {s_{q} q_{x}^{\left( 1 \right)} } \\ { - s_{j} n\Delta tF_{y1} } \\ {s_{q} q_{y}^{\left( 1 \right)} } \\ {s_{v} p_{xx}^{\left( 1 \right)} } \\ {s_{v} p_{xy}^{\left( 1 \right)} } \\ \end{array} } \right) - \frac{{2\theta_{1} }}{\Delta t}\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ {\rho u_{x} } \\ { - \rho u_{x} } \\ {\rho u_{y} } \\ { - \rho u_{y} } \\ 0 \\ 0 \\ \end{array} } \right) + B\left( {\begin{array}{*{20}c} 0 \\ {6C{\mathbf{u}} \cdot {\mathbf{F}}_{1} } \\ { - 6C{\mathbf{u}} \cdot {\mathbf{F}}_{1} } \\ {F_{x1} } \\ { - F_{x1} } \\ {F_{y1} } \\ { - F_{y1} } \\ {2C\left( {u_{x} F_{x1} - u_{y} F_{y1} } \right)} \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ \end{array} } \right) $$
(A-7)

in which the first-order equations corresponding to the mass and momentum conservation are

$$ \nabla_{1} \cdot \left( {\rho {\mathbf{u}}} \right) = 0, $$
(A-8a)
$$ \nabla_{1} p = \left( {s_{j} n + B} \right){\mathbf{F}}_{1} - \frac{{2\theta_{1} }}{\Delta t}\rho {\mathbf{u}}, $$
(A-8b)

where p = ρc 2 s  = ρ/3 is applied.

Similarly, the second-order hydrodynamic equation in \( \epsilon \) can be derived

$$ \begin{aligned} \frac{\partial }{{\partial x_{1} }}\left( {\begin{array}{*{20}c} { - \tilde{s}_{j} n\Delta tF_{x1} } \\ { - \tilde{s}_{j} n\Delta tF_{x1} + \tilde{s}_{q} q_{x}^{\left( 1 \right)} } \\ {\tilde{s}_{q} q_{x}^{\left( 1 \right)} } \\ {\tilde{s}_{e} e^{\left( 1 \right)} /6 + \tilde{s}_{v} p_{xx}^{\left( 1 \right)} /2} \\ {\tilde{s}_{e} e^{\left( 1 \right)} /3 + \tilde{s}_{\varepsilon } \varepsilon^{\left( 1 \right)} /3 - \tilde{s}_{v} p_{xx}^{\left( 1 \right)} } \\ {\tilde{s}_{v} p_{xy}^{\left( 1 \right)} } \\ {\tilde{s}_{v} p_{xy}^{\left( 1 \right)} } \\ { - \tilde{s}_{j} n\Delta tF_{x1} /3 - \tilde{s}_{q} q_{x}^{\left( 1 \right)} /3} \\ { - 2\tilde{s}_{j} n\Delta tF_{y1} /3 + \tilde{s}_{q} q_{y}^{\left( 1 \right)} /3} \\ \end{array} } \right) + \frac{\partial }{{\partial y_{1} }}\left( {\begin{array}{*{20}c} { - \tilde{s}_{j} n\Delta tF_{y1} } \\ { - \tilde{s}_{j} n\Delta tF_{y1} + \tilde{s}_{q} q_{y}^{\left( 1 \right)} } \\ {\tilde{s}_{q} q_{y}^{\left( 1 \right)} } \\ {\tilde{s}_{v} p_{xy}^{\left( 1 \right)} } \\ {\tilde{s}_{v} p_{xy}^{\left( 1 \right)} } \\ {\tilde{s}_{e} e^{\left( 1 \right)} /6 - \tilde{s}_{v} p_{xx}^{\left( 1 \right)} /2} \\ {\tilde{s}_{e} e^{\left( 1 \right)} /3 + \tilde{s}_{\varepsilon } \varepsilon^{\left( 1 \right)} /3 + \tilde{s}_{v} p_{xx}^{\left( 1 \right)} } \\ {\tilde{s}_{j} n\Delta tF_{y1} /3 + \tilde{s}_{q} q_{y}^{\left( 1 \right)} /3} \\ { - 2\tilde{s}_{j} n\Delta tF_{x1} /3 + \tilde{s}_{q} q_{x}^{\left( 1 \right)} /3} \\ \end{array} } \right) + \frac{B\Delta t}{2}\frac{\partial }{{\partial x_{1} }}\left( {\begin{array}{*{20}c} {F_{x1} } \\ 0 \\ { - F_{x1} } \\ {2Cu_{x} F_{x1} } \\ {2C\left( {u_{y} F_{y1} - u_{x} F_{x1} } \right)} \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ {2F_{x1} /3} \\ {F_{y1} /3} \\ \end{array} } \right) + \frac{B\Delta t}{2}\frac{\partial }{{\partial y_{1} }}\left( {\begin{array}{*{20}c} {F_{y1} } \\ 0 \\ { - F_{y1} } \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ {2cu_{y} F_{y1} } \\ {2C\left( {u_{x} F_{x1} - u_{y} F_{y1} } \right)} \\ { - 2F_{y1} /3} \\ {F_{x1} /3} \\ \end{array} } \right) \hfill \\ = - \frac{1}{\Delta t}\left( {\begin{array}{*{20}c} 0 \\ {s_{e} e^{\left( 2 \right)} } \\ {s_{\varepsilon } \varepsilon^{\left( 2 \right)} } \\ 0 \\ {s_{q} q_{x}^{\left( 2 \right)} } \\ 0 \\ {s_{q} q_{y}^{\left( 2 \right)} } \\ {s_{v} p_{xx}^{\left( 2 \right)} } \\ {s_{v} p_{xy}^{\left( 2 \right)} } \\ \end{array} } \right) + \frac{{2\theta_{1} }}{\Delta t}\left( {\begin{array}{*{20}c} 0 \\ {s_{e} e^{\left( 1 \right)} /2} \\ {s_{\varepsilon } \varepsilon^{\left( 1 \right)} /2} \\ {\tilde{s}_{j} n\Delta tF_{1x} } \\ { - \tilde{s}_{q} q_{x}^{\left( 1 \right)} } \\ {\tilde{s}_{j} n\Delta tF_{1y} } \\ { - \tilde{s}_{q} q_{y}^{\left( 1 \right)} } \\ {s_{v} p_{xx}^{\left( 1 \right)} /2} \\ {s_{v} p_{xy}^{\left( 1 \right)} /2} \\ \end{array} } \right) - \theta_{1} B\left( {\begin{array}{*{20}c} 0 \\ {6C{\mathbf{u}} \cdot {\mathbf{F}}_{1} } \\ { - 6C{\mathbf{u}} \cdot {\mathbf{F}}_{1} } \\ {F_{x1} } \\ { - F_{x1} } \\ {F_{y1} } \\ { - F_{y1} } \\ {2C\left( {u_{x} F_{x1} - u_{y} F_{y1} } \right)} \\ {C\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \\ \end{array} } \right) + \frac{\partial }{{\partial x_{1} }}\left( {\begin{array}{*{20}c} {\theta_{1} \rho u_{x} } \\ 0 \\ { - \theta_{1} \rho u_{x} } \\ 0 \\ 0 \\ 0 \\ 0 \\ {2\theta_{1} \rho u_{x} /3} \\ {\theta_{1} \rho u_{y} /3} \\ \end{array} } \right) + \frac{\partial }{{\partial y_{1} }}\left( {\begin{array}{*{20}c} {\theta_{1} \rho u_{y} } \\ 0 \\ { - \theta_{1} \rho u_{y} } \\ 0 \\ 0 \\ 0 \\ 0 \\ { - 2\theta_{1} \rho u_{y} /3} \\ {\theta_{1} \rho u_{x} /3} \\ \end{array} } \right). \hfill \\ \end{aligned} $$
(A-9)

Neglecting the terms of the order O(Ma3), we can obtain the following equations for e(1), p (1) xx and p (1) xy with the aid of Eq. (A-7):

$$ - \frac{1}{\Delta t}s_{e} e^{\left( 1 \right)} = - 6BC{\mathbf{u}} \cdot {\mathbf{F}}_{1} , $$
(A-10a)
$$ - \frac{1}{\Delta t}s_{v} p_{xx}^{\left( 1 \right)} = \frac{2}{3}\left( {\frac{{\partial \rho u_{x} }}{{\partial x_{1} }} - \frac{{\partial \rho u_{y} }}{{\partial y_{1} }}} \right) - 2BC\left( {u_{x} F_{x1} - u_{y} F_{y1} } \right), $$
(A-10b)
$$ - \frac{1}{\Delta t}s_{v} p_{xy}^{\left( 1 \right)} = \frac{1}{3}\left( {\frac{{\partial \rho u_{y} }}{{\partial x_{1} }} + \frac{{\partial \rho u_{x} }}{{\partial y_{1} }}} \right) - BC\left( {u_{x} F_{y1} + u_{y} F_{x1} } \right). $$
(A-10c)

Then the second-order equations corresponding to the mass and momentum conservation are

$$ - \nabla_{1} \cdot \left( {\theta_{1} \rho {\mathbf{u}}} \right) = \frac{{\left[ {\left( {2 - s_{j} } \right)n - B} \right]\Delta t}}{2}\Delta t\left( {\nabla_{1} \cdot {\mathbf{F}}_{1} } \right), $$
(A-11a)
$$ \begin{aligned} BC\Delta t\left\{ {\frac{\partial }{{\partial x_{1} }}\left[ {\left( {s_{e}^{ - 1} + s_{v}^{ - 1} } \right)\left( {u_{x} F_{x1} } \right) + \left( {s_{e}^{ - 1} - s_{v}^{ - 1} } \right)\left( {u_{y} F_{y1} } \right)} \right] + \frac{\partial }{{\partial y_{1} }}\left[ {s_{v}^{ - 1} \left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \right]} \right\} \hfill \\ = \frac{\partial }{{\partial x_{1} }}\left[ {\frac{\Delta t}{3}\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\left( {\frac{{\partial \rho u_{x} }}{{\partial x_{1} }} - \frac{{\partial \rho u_{y} }}{{\partial y_{1} }}} \right)} \right] + \frac{\partial }{{\partial y_{1} }}\left[ {\frac{\Delta t}{3}\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\left( {\frac{{\partial \rho u_{y} }}{{\partial x_{1} }} + \frac{{\partial \rho u_{x} }}{{\partial y_{1} }}} \right)} \right] + \theta_{1} \left[ {\left( {2 - s_{j} } \right)n - B} \right]F_{x1} , \hfill \\ \end{aligned} $$
(A-11b)
$$ \begin{aligned} BC\Delta t\left\{ {\frac{\partial }{{\partial x_{1} }}\left[ {s_{v}^{ - 1} \left( {u_{x} F_{y1} + u_{y} F_{x1} } \right)} \right] + \frac{\partial }{{\partial y_{1} }}\left[ {\left( {s_{e}^{ - 1} - s_{v}^{ - 1} } \right)u_{x} F_{x1} + \left( {s_{e}^{ - 1} + s_{v}^{ - 1} } \right)u_{y} F_{y1} } \right]} \right\} \hfill \\ = \frac{\partial }{{\partial x_{1} }}\left[ {\frac{\Delta t}{3}\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\left( {\frac{{\partial \rho u_{y} }}{{\partial x_{1} }} + \frac{{\partial \rho u_{x} }}{{\partial y_{1} }}} \right)} \right] + \frac{\partial }{{\partial y_{1} }}\left[ {\frac{\Delta t}{3}\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\left( {\frac{{\partial \rho u_{y} }}{{\partial y_{1} }} - \frac{{\partial \rho u_{x} }}{{\partial x_{1} }}} \right)} \right] + \theta_{1} \left[ {\left( {2 - s_{j} } \right)n - B} \right]F_{y1} . \hfill \\ \end{aligned} $$
(A-11c)

Combining the terms in Eq. (A-9) and Eq. (A-11) of orders \( {\rm O}\left( \epsilon \right) \) and \( {\rm O}\left( { \epsilon^{2} } \right) \), we have the macroscopic mass and momentum equations

$$ \nabla \cdot \left[ {\left( {1 - \theta } \right)\rho {\mathbf{u}}} \right] = \frac{{\left[ {\left( {2 - s_{j} } \right)n - B} \right]\Delta t}}{2}\nabla \cdot {\mathbf{F}}, $$
(A-12a)
$$ \nabla p + BC\Delta t\left( {\nabla {\varvec{\uppsi}} + \nabla \cdot {\varvec{\varphi }}} \right) = \nabla \cdot {\varvec{\uptau}} + \left[ {2n\theta + \left( {s_{j} n + B} \right)\left( {1 - \theta } \right)} \right]{\mathbf{F}} - \frac{2\theta }{\Delta t}\rho {\mathbf{u}}, $$
(A-12b)

where τ is the shear stress defined as

$$ {\varvec{\uptau}} = \rho c_{s}^{2} \Delta t\left( {s_{v}^{ - 1} - \tfrac{1}{2}} \right)\left[ {2{\dot{\mathbf{e}}} - \left( {\nabla \cdot {\mathbf{u}}} \right){\mathbf{I}}} \right], $$
(A-13)

where \( {\dot{\mathbf{e}}} = \frac{1}{2}\left[ {\nabla {\mathbf{u}} + \left( {\nabla {\mathbf{u}}} \right)^{T} } \right] \) is the strain rate tensor. For incompressible flow, Eq. (A-13) can be further simplified as \( {\varvec{\uptau}} = 2\rho c_{s}^{2} \Delta t\left( {s_{v}^{ - 1} - \tfrac{1}{2}} \right){\dot{\mathbf{e}}} \).

Substitution of Eq. (A-13) into Eq. (A-12b) gives

$$ \nabla p + BC\Delta t\left( {\nabla {\varvec{\uppsi}} + \nabla \cdot {\varvec{\varphi }}} \right) = \rho c_{s}^{2} \Delta t\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\nabla^{2} {\mathbf{u}} + \left[ {2n\theta + \left( {s_{j} n + B} \right)\left( {1 - \theta } \right)} \right]{\mathbf{F}} - \frac{2\theta }{\Delta t}\rho {\mathbf{u}}. $$
(A-12b*)

On LHS of Eq. (A-12b*), ψ and φ are given as

$$ {\varvec{\uppsi}} = \left( {s_{e}^{ - 1} - s_{v}^{ - 1} } \right){\mathbf{u}} \cdot {\mathbf{F}}, $$
(A-14a)
$$ {\varvec{\varphi }} = s_{v}^{ - 1} \left[ {{\mathbf{uF}} + \left( {{\mathbf{uF}}} \right)^{T} } \right]. $$
(A-14b)

Now, let us compare Eq. (A-12a) with the steady-state mass conservation equation

$$ \nabla \cdot \left( {\rho {\mathbf{v}}} \right) = 0. $$
(A-15)

It is clear that a redefinition of macroscopic velocity v = (1 − θ)u is necessary such that Eq. (A-12a) becomes consistent with Eq. (A-15) and only force Treatments 1 and 2 guarantee the mass transport to be conserved with a non-divergence-free force field (See Table 1). By taking into account the macroscopic velocity redefinition and comparing Eq. (A-12b*) with the Brinkman equation Eq. (A-16) term by term,

$$ \nabla p = \tilde{\mu }\nabla^{2} {\mathbf{v}} - \frac{\mu }{K}{\mathbf{v}} + {\mathbf{G}}, $$
(A-16)

one can obtain the relations between of GLBE parameters with the macroscopic variables (see Eqs. (18, 19)) as well as the force redefinition (see Table 2).

Following the same procedure, the recovered macroscopic mass and momentum equations and the corresponding redefinitions for the macroscopic velocity and the forcing term can be derived for the other two GLBE schemes. For YH scheme in particular, since its θ is defined on half-link between two neighboring nodes instead of being on the nodes, it essentially becomes θ(x + e α Δt/2) and thusly needs to be further expanded. Here we give their recovered macroscopic mass and momentum equations:

ZM scheme [17]:

$$ \nabla \cdot \left[ {\left( {1 - \theta } \right)\rho {\mathbf{u}}} \right] = \frac{{\left[ {\left( {2 - s_{j} } \right)n - B} \right]\Delta t}}{2}\nabla \cdot {\mathbf{F}}, $$
(A-17a)
$$ \nabla p + BC\Delta t\left( {\nabla {\varvec{\uppsi}} + \nabla \cdot {\varvec{\varphi }}} \right) = \rho c_{s}^{2} \Delta t\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\nabla^{2} {\mathbf{u}} + \left[ {2n\theta + \left( {s_{j} n + B} \right)\left( {1 - 2\theta } \right)} \right]{\mathbf{F}} - \frac{2\theta }{\Delta t}\rho {\mathbf{u}}. $$
(A-17b)

YH scheme [18]:

$$ \nabla \cdot \left( {\rho {\mathbf{u}}} \right) = \frac{{\left[ {\left( {2 - s_{j} } \right)n - B} \right]\Delta t}}{2}\nabla \cdot {\mathbf{F}}, $$
(A-18a)
$$ \left( {1 - \theta } \right)\nabla p + BC\Delta t\left( {\nabla {\varvec{\uppsi}} + \nabla \cdot {\varvec{\varphi }}} \right) = \rho c_{s}^{2} \Delta t\left( {s_{v}^{ - 1} - \frac{1}{2}} \right)\nabla^{2} {\mathbf{u}} + \left[ {2n\theta + \left( {s_{j} n + B} \right)\left( {1 - 2\theta } \right)} \right]{\mathbf{F}} - \frac{2\theta }{\Delta t}\rho {\mathbf{u}}. $$
(A-18b)

Comparing Eqs. (A-17a, A-18a) and (A-17b, A-18b) with the respective steady-state mass conservation equation and the Brinkman equation, one can obtain the respective macroscopic velocity redefinition described in Sect. 2.2.2 and force redefinition summarized in Table 2.

Appendix B: Analytical Solutions to the Recovered Momentum Eqs. (28, 29) for Flow Through Porous Blocks in “Parallel”

The analytical solutions to Eqs. (28) and (29) with the velocity and shear stress continuity conditions discussed in Sect. 3.3 are provided here.

Recall that Eq. (28) is in the forms of

$$ \begin{aligned} \frac{dp}{dy} = \frac{{\nu^{*} }}{{1 - \theta_{1} }}\frac{{d^{2} V_{y1} }}{{dx^{2} }} - \frac{{2\theta_{1} }}{{1 - \theta_{1} }}V_{y1} \quad - L \le x \le 0 \hfill \\ \frac{dp}{dy} = \frac{{\nu^{*} }}{{1 - \theta_{2} }}\frac{{d^{2} V_{y2} }}{{dx^{2} }} - \frac{{2\theta_{2} }}{{1 - \theta_{2} }}V_{y2} \quad 0 \le x \le L \hfill \\ \end{aligned} $$
(B-1)

with the following boundary conditions

  1. (i)

    Velocity continuity: Vy1|x=0 = Vy2|x=0 and Vy1|x=-L = Vy2|x=L;

  2. (ii)

    Shear stress continuity \( \left. {\frac{{\nu^{*} }}{{1 - \theta_{1} }}\frac{{dV_{y1} }}{dx}} \right|_{x = 0} = \left. {\frac{{\nu^{*} }}{{1 - \theta_{2} }}\frac{{dV_{y2} }}{dx}} \right|_{x = 0} \) and \( \left. {\frac{{\nu^{*} }}{{1 - \theta_{1} }}\frac{{dV_{y1} }}{dx}} \right|_{x = - L} = \left. {\frac{{\nu^{*} }}{{1 - \theta_{2} }}\frac{{dV_{y2} }}{dx}} \right|_{x = L} \).

Its general solution can be expressed as

$$ \begin{aligned} V_{y1} (x) = C_{1} \exp \left( {\sqrt {\frac{{2\theta_{1} }}{{\nu^{*} }}} x} \right) + C_{2} \exp \left( { - \sqrt {\frac{{2\theta_{1} }}{{\nu^{*} }}} x} \right) - \frac{{1 - \theta_{1} }}{{2\theta_{1} }}\frac{dp}{dy} \quad - L \le x \le 0 \hfill \\ V_{y2} (y) = C_{3} \exp \left( {\sqrt {\frac{{2\theta_{2} }}{{\nu^{*} }}} x} \right) + C_{4} \exp \left( { - \sqrt {\frac{{2\theta_{2} }}{{\nu^{*} }}} x} \right) - \frac{{1 - \theta_{2} }}{{2\theta_{2} }}\frac{dp}{dy} \quad 0 \le x \le L \hfill \\ \end{aligned} $$
(B-2)

where C i i \( \in \) {1, 2, 3, 4} are the coefficients to be determined.

By applying the velocity continuity boundary conditions, the following two constraints are obtained

$$ C_{1} + C_{2} - C_{3} - C_{4} = \Delta $$
(B-3a)
$$ \alpha_{1} C_{1} + {{C_{2} } \mathord{\left/ {\vphantom {{C_{2} } {\alpha_{1} }}} \right. \kern-0pt} {\alpha_{1} }} - \alpha_{2} C_{3} - {{C_{4} } \mathord{\left/ {\vphantom {{C_{4} } {\alpha_{2} }}} \right. \kern-0pt} {\alpha_{2} }} = \Delta $$
(B-3b)

where \( \Delta = \left( {\frac{{1 - \theta_{1} }}{{2\theta_{1} }} - \frac{{1 - \theta_{2} }}{{2\theta_{2} }}} \right)\frac{dp}{dy} \) and \( \alpha_{i} = \exp \left( { - \sqrt {\frac{{2\theta_{i} }}{{\nu^{*} }}} L} \right),\;i \in \left\{{1,2} \right\} \) for simplicity. Similarly, two other constraints can be derived with the shear stress boundary conditions.

$$ \beta_{1} C_{1} - \beta_{1} C_{2} - \beta_{2} C_{3} + \beta_{2} C_{4} = 0 $$
(B-3c)
$$ \alpha_{1} \beta_{1} C_{1} - \left( {{{\beta_{1} } \mathord{\left/ {\vphantom {{\beta_{1} } {\alpha_{1} }}} \right. \kern-0pt} {\alpha_{1} }}} \right)C_{2} - \alpha_{2} \beta_{2} C_{3} + \left( {{{\beta_{2} } \mathord{\left/ {\vphantom {{\beta_{2} } {\alpha_{2} }}} \right. \kern-0pt} {\alpha_{2} }}} \right)C_{4} = 0 $$
(B-3d)

where \( \beta_{i} = \frac{{\sqrt {2\theta_{i} \nu^{*} } }}{{1 - \theta_{i} }},\;i \in \left\{ {1,2} \right\} \). The linear system with four unknowns C i \(i \in \left\{ {1,2,3,4} \right\}\) given by Eq. (B-3) has the following solution

$$ \begin{array}{*{20}c} {C_{1} = - \frac{{\Delta \beta_{2} \left( {\alpha_{2} - 1} \right)}}{\varLambda }} \\ {C_{2} = - \frac{{\Delta \alpha_{1} \beta_{2} \left( {\alpha_{2} - 1} \right)}}{\varLambda }} \\ {C_{3} = - \frac{{\Delta \beta_{1} \left( {\alpha_{1} - 1} \right)}}{\varLambda }} \\ {C_{4} = - \frac{{\Delta \alpha_{2} \beta_{1} \left( {\alpha_{1} - 1} \right)}}{\varLambda }} \\ \end{array} , $$
(B-4)

where Λ = β1(α1 − 1)(α2 + 1) − β2(α1 + 1)(α2 − 1).

Following the same process, Eq. (29) expressed as

$$ \begin{array}{*{20}c} {\frac{dp}{dy} = \nu^{*} \frac{{d^{2} u_{y1} }}{{dx^{2} }} - 2\theta_{1} u_{y1} } & { - L \le x \le 0} \\ {\frac{dp}{dy} = \nu^{*} \frac{{d^{2} u_{y2} }}{{dx^{2} }} - 2\theta_{2} u_{y2} } & {0 \le x \le L} \\ \end{array} , $$
(B-5)

has the general solution in the forms of

$$ \begin{array}{*{20}c} {u_{y1} (x) = C_{1}^{\prime } \exp \left( {\sqrt {\frac{{2\theta_{1} }}{{\nu^{*} }}} x} \right) + C_{2}^{\prime } \exp \left( { - \sqrt {\frac{{2\theta_{1} }}{{\nu^{*} }}} x} \right) - \frac{1}{{2\theta_{1} }}\frac{dp}{dy}} &\quad { - L \le x \le 0} \\ {u_{y2} (y) = C_{3}^{\prime } \exp \left( {\sqrt {\frac{{2\theta_{2} }}{{\nu^{*} }}} x} \right) + C_{4}^{\prime } \exp \left( { - \sqrt {\frac{{2\theta_{2} }}{{\nu^{*} }}} x} \right) - \frac{1}{{2\theta_{2} }}\frac{dp}{dy}} &\quad {0 \le x \le L} \\ \end{array} , $$
(B-6)

where C i \(i \in \left\{ {1,2,3,4} \right\}\) are the coefficients to be determined. By applying the velocity and shear stress continuity boundary conditions (1 − θ1)uy1|x=0 = (1 − θ2)uy2|x=0, (1 − θ1)uy1|x=−L = (1 − θ2)uy2|x=L and \( \left. {\nu^{*} \frac{{du_{y1} }}{dx}} \right|_{x = 0} = \left. {\nu^{*} \frac{{du_{y2} }}{dx}} \right|_{x = 0} \), \( \left. {\nu^{*} \frac{{du_{y1} }}{dx}} \right|_{x = - L} = \left. {\nu^{*} \frac{{du_{y2} }}{dx}} \right|_{x = L} \), the following system of equations can be obtained.

$$ \left[ {\begin{array}{*{20}c} {1 - \theta_{1} } & {1 - \theta_{1} } & { - \left( {1 - \theta_{2} } \right)} & { - \left( {1 - \theta_{2} } \right)} \\ {\left( {1 - \theta_{1} } \right)\alpha_{1} } & {{{\left( {1 - \theta_{1} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \theta_{1} } \right)} {\alpha_{1} }}} \right. \kern-0pt} {\alpha_{1} }}} & { - \left( {1 - \theta_{2} } \right)\alpha_{2} } & { - {{\left( {1 - \theta_{2} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \theta_{2} } \right)} {\alpha_{2} }}} \right. \kern-0pt} {\alpha_{2} }}} \\ {\beta_{1}^{\prime } } & { - \beta_{1}^{\prime } } & { - \beta_{2}^{\prime } } & {\beta_{2}^{\prime } } \\ {\alpha_{1} \beta_{1}^{\prime } } & {{{ - \beta_{1}^{\prime } } \mathord{\left/ {\vphantom {{ - \beta_{1}^{\prime } } {\alpha_{1} }}} \right. \kern-0pt} {\alpha_{1} }}} & { - \alpha_{2} \beta_{2}^{\prime } } & {{{\beta_{2}^{\prime } } \mathord{\left/ {\vphantom {{\beta_{2}^{\prime } } {\alpha_{2} }}} \right. \kern-0pt} {\alpha_{2} }}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {C^{\prime}_{1} } \\ {C^{\prime}_{2} } \\ {C^{\prime}_{3} } \\ {C^{\prime}_{4} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\Delta^{\prime}} \\ {\Delta^{\prime}} \\ 0 \\ 0 \\ \end{array} } \right], $$
(B-7)

where \( \beta_{i} = \sqrt {2\theta_{i} \nu^{*} } ,\;i \in \left\{ {1,2} \right\} \) and \( \Delta^{\prime} = \left( {\frac{1}{{2\theta_{1} }} - \frac{1}{{2\theta_{2} }}} \right)\frac{dp}{dy} \). Its solution is

$$ \begin{array}{*{20}c} {C_{1}^{\prime } = - \frac{{\Delta^{\prime } \beta_{2}^{\prime } \left( {\alpha_{2} - 1} \right)}}{{\varLambda^{\prime } }}} \\ {C_{2}^{\prime } = - \frac{{\Delta^{\prime } \alpha_{1} \beta_{2}^{\prime } \left( {\alpha_{2} - 1} \right)}}{{\varLambda^{\prime } }}} \\ {C_{3}^{\prime } = - \frac{{\Delta^{\prime } \beta^{\prime }_{1} \left( {\alpha_{1} - 1} \right)}}{{\varLambda^{\prime } }}} \\ {C_{4}^{\prime } = - \frac{{\Delta^{\prime } \alpha_{2} \beta_{1}^{\prime } \left( {\alpha_{1} - 1} \right)}}{{\varLambda^{\prime } }}} \\ \end{array} , $$
(B-8)

where Λ = β1(α1 − 1)(α2 + 1)(θ2 − 1) − β2(α1 + 1)(α2 − 1)(θ1 − 1). To solve the macroscopic velocity, the relation V yi (x) = (1 − θ i )u yi (x), \( i \in \{1, 2\} \) needs to be applied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, L., Mei, R. et al. Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media. J Stat Phys 171, 493–520 (2018). https://doi.org/10.1007/s10955-018-2005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2005-1

Keywords

Navigation