Advertisement

Journal of Statistical Physics

, Volume 171, Issue 2, pp 207–219 | Cite as

A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains

  • Choon-Lin Ho
  • Yusuke Ide
  • Norio Konno
  • Etsuo Segawa
  • Kentaro Takumi
Article

Abstract

In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy’s walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.

Keywords

Quantum walk Birth and death chain Ehrenfest model Krawtchouk polynomials 

Notes

Acknowledgements

We thank the anonymous referees for their careful reading of our manuscript and their fruitful comments and suggestions. C.L.H. was supported in part by the Ministry of Science and Technology (MoST) of the Republic of China under Grants MoST 105-2112-M-032-003. Y.I. was supported by the Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 16K17652). N.K. was supported by the Grant-in-Aid for Challenging Exploratory Research of Japan Society for the Promotion of Science (Grant No. 15K13443). E.S. was supported by the Grant-in-Aid for Young Scientists (B) and the Grant-in-Aid for Scientific Research (B) of Japan Society for the Promotion of Science (Grant No. 16K17637, 16H03939).

References

  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.V.: Quantum walks on graphs. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 50–59 (2001)Google Scholar
  2. 2.
    Arai, T., Ho, C.-L., Ide, Y., Konno, N.: Periodicity for space-inhomogeneous quantum walks on the cycle. Yokohama Math. J. 62, 39–50 (2016)Google Scholar
  3. 3.
    Balu, R., Liu, C., Venegas-Andraca, S.: Probability distributions for Markov chains based quantum walks. J. Phys. A 51, 035301 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bednarska, M., Grudka, A., Kurzyński, P., Łuczak, T., Wójcik, A.: Quantum walks on cycles. Phys. Lett. A 317, 21–25 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Diaconis, P., Shahshahani, M.: Time to reach stationary in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18, 208–218 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ehrenfest, P., Ehrenfest, T.: Über zwei bekannte Einwände gegen das Boltzmannsche H-theorem. Phys. Zeits. 8, 311–314 (1907)zbMATHGoogle Scholar
  7. 7.
    Feinsilver, P.: Sums of squaresofKrawtchoukpolynomials, Catalan numbers, and some algebras overthebooleanlattice. arXiv:1603.07023v1 (2016)
  8. 8.
    Feinsilver, P., Fitzgerald, R.: The spectrum of symmetric Krawtchouk matrices. Lin. Alg. Appl. 235, 121–139 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer, New York (2007)zbMATHGoogle Scholar
  10. 10.
    Ide, Y., Konno, N., Segawa, E.: Time averaged distribution of a discrete-time quantum walk on the path. Quantum Inf. Process. 11(5), 1207–1218 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ide, Y., Konno, N., Segawa, E., Xu, X.-P.: Localization of discrete time quantum walks on the glued trees. Entropy 16(3), 1501–1514 (2014)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comp. Sci. 17, 1169–1220 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Konno, N.: Quantum Walks. In: Franz, U., Schürmann, M. (eds.) Quantum Potential Theory. Lecture Notes in Mathematics, pp. 309–452. Springer-Verlag, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, New York (2013)zbMATHGoogle Scholar
  16. 16.
    Marquezino, F.L., Portugal, R., Abal, G., Donangelo, R.: Mixing times in quantum walks on the hypercube. Phys. Rev. A 77, 042312 (2008)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Portugal, R., Segawa, E.: Coined quantum walks as quantum Markov chains. Interdis. Inf. Sci. 23(1), 119–125 (2017)Google Scholar
  19. 19.
    Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Nanosci. 10, 1583–1590 (2013)CrossRefGoogle Scholar
  20. 20.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04), pp. 32–41 (2004)Google Scholar
  21. 21.
    Venegas-Andraca, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool, San Rafael (2008)zbMATHGoogle Scholar
  22. 22.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Choon-Lin Ho
    • 1
  • Yusuke Ide
    • 2
  • Norio Konno
    • 3
  • Etsuo Segawa
    • 4
  • Kentaro Takumi
    • 3
  1. 1.Department of PhysicsTamkang UniversityNew Taipei CityTaiwan, ROC
  2. 2.Department of Information Systems Creation, Faculty of EngineeringKanagawa UniversityYokohamaJapan
  3. 3.Department of Applied Mathematics, Faculty of EngineeringYokohama National UniversityYokohamaJapan
  4. 4.Graduate School of Information ScienceTohoku UniversitySendaiJapan

Personalised recommendations