Skip to main content
Log in

A Functional Central Limit Theorem for the Becker–Döring Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the fluctuations of the stochastic Becker–Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M., Carr, J., Penrose, O.: The Becker–Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)

    Article  ADS  MATH  Google Scholar 

  3. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik 416, 719–752 (1935)

    Article  ADS  MATH  Google Scholar 

  4. Billingsley, P.: Convergence of probability measures. 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999) A Wiley-Interscience Publication

  5. Braun, W., Hepp, K.: The vlasov dynamics and its fluctuations in the \(1/n\) limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Budhiraja, A., Friedlander, E.: Diffusion approximations for load balancing mechanisms in cloud storage systems (2017). arXiv:1706.09914

  7. Chang, C.C.: Fluctuations of one-dimensional Ginzburg–Landau models in nonequilibrium. Commun. Math. Phys. 145(2), 209–234 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  9. Deschamps, J., Hingant, E., Yvinec, R.: Boundary value for a nonlinear transport equation emerging from a stochastic coagulation-fragmentation type model. ArXiv e-prints (December 2014)

  10. Durrett, R., Granovsky, B.L., Gueron, S.: The equilibrium behavior of reversible coagulation-fragmentation processes. J. Theor. Probab. 12(2), 447–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  12. Eugène, S., Xue, W.-F., Robert, P., Doumic, M.: Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly. J. Chem. Phys. 144(17), 175101 (2016)

    Article  ADS  Google Scholar 

  13. Graham, C.: Functional central limit theorems for a large network in which customers join the shortest of several queues. Probab. Theory Relat. Fields 131(1), 97–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118(1), 31–59 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hingant, E., Yvinec, R.: Deterministic and Stochastic Becker-Döring equations: past and recent mathematical developments (2016). arXiv:1609.00697

  16. James, R.: Norris, Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9(1), 78–109 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jeon, I.: Existence of gelling solutions for coagulation–fragmentation equations. Commun. Math. Phys. 194(3), 541–567 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)

    Article  ADS  Google Scholar 

  19. Kurtz, T.G.: Strong approximation theorems for density dependent markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurençot, P., Mischler, S.: From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations. J. Stat. Phys. 106(5), 957–991 (2002)

    Article  MATH  Google Scholar 

  21. Morris, A.M., Watzky, M.A., Finke, R.G.: Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1794(3), 375–397 (2009)

    Article  Google Scholar 

  22. Niethammer, B.: Macroscopic limits of the Becker–Döring equations. Commun. Math. Sci. 2(1), 85–92 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oosawa, F., Asakura, S.: Thermodynamics of the Polymerization of Protein. Academic Press, New York (1975)

    Google Scholar 

  24. Penrose, O.: Metastable states for the Becker–Döring cluster equations. Commun. Math. Phys. 124(4), 515–541 (1989)

    Article  ADS  MATH  Google Scholar 

  25. Penrose, O.: Nucleation and droplet growth as a stochastic process, analysis and stochastics of growth processes and interface models, pp. 265–277. Oxford University Press, Oxford. MR 2603228 (2008)

  26. Prigent, S., Ballesta, A., Charles, F., Lenuzza, N., Gabriel, P., Tine, L.M., Rezaei, H., Doumic, M.: An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation. PLoS ONE 7(11), e43273 (2012)

    Article  ADS  Google Scholar 

  27. Ranjbar, M., Rezakhanlou, F.: Equilibrium fluctuations for a model of coagulating–fragmenting planar Brownian particles. Commun. Math. Phys. 296(3), 769–826 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Spohn, H.: Equilibrium fluctuations for interacting brownian particles. Commun. Math. Phys. 103(1), 1–33 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Herbert, S.: Large scale dynamics of interacting particles. Springer, Berlin (2012)

    Google Scholar 

  30. Szavits-Nossan, J., Eden, K., Morris, R.J., MacPhee, C.E., Evans, M.R., Allen, R.J.: Inherent variability in the kinetics of autocatalytic protein self-assembly. Phys. Rev. Lett. 113, 098101 (2014)

    Article  ADS  Google Scholar 

  31. Sznitman, A.-S.: Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56(3), 311–336 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xue, W.-F., Homans, S.W., Radford, S.E.: Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. PNAS 105, 8926–8931 (2008)

    Article  ADS  Google Scholar 

  33. Yor, M.: Existence et unicité de diffusions à valeurs dans un espace de Hilbert. Annales de l’I.H.P. Probabilités et statistiques 10(1), 55–88 (1974)

    MATH  Google Scholar 

  34. Zhu, M.: Equilibrium fluctuations for one-dimensional Ginzburg–Landau lattice model. Nagoya Math. J. 117, 63–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks two anonymous referees for their comments and references that have been very helpful to clarify several aspects of this paper. The author also would like to express her gratitude to her advisor Professor Philippe Robert for valuable discussions. The author’s work is supported by the grant from Foundation Sciences Mathématiques de Paris (FSMP), overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (Reference: ANR-10-LABX-0098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W. A Functional Central Limit Theorem for the Becker–Döring Model. J Stat Phys 171, 145–165 (2018). https://doi.org/10.1007/s10955-018-1993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1993-1

Keywords

Navigation