Skip to main content
Log in

On the Asymptotic Behavior of the Kernel Function in the Generalized Langevin Equation: A One-Dimensional Lattice Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present some estimates for the memory kernel function in the generalized Langevin equation, derived using the Mori–Zwanzig formalism from a one-dimensional lattice model, in which the particles interactions are through nearest and second nearest neighbors. The kernel function can be explicitly expressed in a matrix form. The analysis focuses on the decay properties, both spatially and temporally, revealing a power-law behavior in both cases. The dependence on the level of coarse-graining is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: collinear atom/harmonic chain model. J. Chem. Phys. 61, 4242 (1974)

    Article  ADS  Google Scholar 

  2. Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375 (1976)

    Article  ADS  Google Scholar 

  3. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. HRW International Editions. Holt, Rinehart and Winston, New York (1976)

    Google Scholar 

  4. Baczewski, A.D., Bond, S.D.: Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel. J. Chem. Phys. 139(4), 044107 (2013)

    Article  ADS  Google Scholar 

  5. Berkowitz, M., Morgan, J.D., Kouri, D.J., McCammon, J.A.: Memory kernels from molecular dynamics. J. Chem. Phys. 75, 2462 (1981)

    Article  ADS  Google Scholar 

  6. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Courier Corporation, New York (1975)

    MATH  Google Scholar 

  8. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2007)

    Google Scholar 

  9. Chen, M., Li, X., Liu, C.: Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules. J. Chem. Phys. 141, 064112 (2014)

    Article  ADS  Google Scholar 

  10. Chorin, A.J., Stinis, P.: Problem reduction, renormalization, and memory. Commun. Appl. Math. Comput. Sci. 1, 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl. Acad. Sci. USA 97, 6253–6257 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction with memory. Physica D 166, 239–257 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chu, W., Li, X.: The Mori-Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics. arXiv preprint arXiv:1709.05928 (2017)

  14. Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequ. Math. 4, 338–352 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Curtaroo, S., Ceder, G.: Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett. 88, 255504 (2002)

    Article  ADS  Google Scholar 

  16. Dama, J.F., Sinitskiy, A.V., McCullagh, M., Weare, J., Roux, B., Dinner, A.R., Voth, G.A.: The theory of ultra-coarse-graining. 1. General principles. J. Chem. Theory Comput. 9(5), 2466–2480 (2013)

    Article  Google Scholar 

  17. Dobson, M., Luskin, M.: An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM J. Numer. Anal. 47, 2455–2475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Español, P.: Dissipative particle dynamics for a harmonic chain: a first-principles derivation. Phys. Rev. E 53(2), 1572 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Florencio Jr., J., Lee, M.H.: Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31(5), 3231 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fricks, J., Yao, L., Elston, T.C., Forest, M.G.: Time-domain methods for diffusive transport in soft matter. SIAM J. Appl. Math. 69(5), 1277–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuller, E.R., Thomson, R.M.: Lattice theories of fracture. Fracture Mechanics of Ceramics. In: Proceedings of the International Symposium, University Park, PA, pp. 507–548 (1978)

  22. Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997)

    Book  MATH  Google Scholar 

  23. Hijón, C., Serrano, M., Español, P.: Markovian approximation in a coarse-grained description of atomic systems. J. Chem. Phys. 125, 204101 (2006)

    Article  ADS  Google Scholar 

  24. Hijón, C., Español, P., Vanden-Eijnden, E., Delgado-Buscalioni, R.: Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss. 144, 301–322 (2010)

    Article  ADS  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  26. Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am. Math. Mon. 111(2), 157–159 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kauzlarić, D., Meier, J.T., Español, P., Succi, S., Greiner, A., Korvink, J.G.: Bottom-up coarse-graining of a simple graphene model: the blob picture. J. Chem. Phys. 134(6), 064106–064106 (2011)

    Article  ADS  Google Scholar 

  28. Kim, J., Sawada, I.: Dynamics of a harmonic oscillator on the bethe lattice. Phys. Rev. E 61(3), R2172 (2000)

    Article  ADS  Google Scholar 

  29. Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    Article  ADS  Google Scholar 

  30. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255–284 (1966)

    Article  ADS  MATH  Google Scholar 

  31. Lange, O.F., Grubmüller, H.: Collective Langevin dynamics of conformational motions in proteins. J. Chem. Phys. 124, 214903 (2006)

    Article  ADS  Google Scholar 

  32. Leach, A.R.: Molecular Modelling: Principles and Applications. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  33. Lee, M.H.: Local dynamics in an infinite harmonic chain. Symmetry 8(4), 22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, C.-S., Chen, Y.-Y., Chi-Hua, Y., Hsu, Y.-C., Chen, C.-S.: Semi-analytical solution for the generalized absorbing boundary condition in molecular dynamics simulations. Comput. Mech. 60(1), 23–37 (2017)

    Article  MathSciNet  Google Scholar 

  35. Lei, H., Baker, N.A., Li, X.: Data-driven parameterization of the generalized Langevin equation. Proc. Natl. Acad. Sci. 113(50), 14183–14188 (2016)

    Article  MathSciNet  Google Scholar 

  36. Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. EPL (Europhys. Lett.) 43(3), 271 (1998)

    Article  ADS  Google Scholar 

  37. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Li, X.: A coarse-grained molecular dynamics model for crystalline solids. Int. J. Numer. Methods Eng. 83, 986–997 (2010)

    Article  MATH  Google Scholar 

  39. Li, X.: Coarse-graining molecular dynamics models using an extended Galerkin projection. Int. J. Numer. Methods Eng. 99, 157–182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X., Weinan, E.: Variational boundary conditions for molecular dynamics simulations of solids at low temperature. Commun. Comput. Phys. 1, 136–176 (2006)

    MATH  Google Scholar 

  41. Li, X., Weinan, E.: Boundary conditions for molecular dynamics simulations at finite temperature: treatment of the heat bath. Phys. Rev. B 76, 104107 (2007)

    Article  ADS  Google Scholar 

  42. Li, X., Ming, P.B.: On the effect of ghost force in the quasicontinuum method: dynamic problems in one dimension. Commun. Comput. Phys. 15, 647–676 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3), 373-80 (2005)

    Article  Google Scholar 

  44. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H.: The martini force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)

    Article  Google Scholar 

  45. Mendl, C.B., Spohn, H.: Current fluctuations for anharmonic chains in thermal equilibrium. J. Stat. Mech. Theory Exp. 2015(3), P03007 (2015)

    Article  MathSciNet  Google Scholar 

  46. Min, W., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Observation of a power law memory kernel for distance fluctuation within a single protein molecule. In: SPIE Third International Symposium on Fluctuations and Noise, pp. 194–204. International Society for Optics and Photonics, Washington (2005)

  47. Ming, P.B., Yang, J.Z.: Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul. 7, 1838–1875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423–450 (1965)

    Article  ADS  MATH  Google Scholar 

  49. Oliva, B., Daura, X., Querol, E., Avilés, F.X., Tapia, O.: A generalized Langevin dynamics approach to model solvent dynamics effects on proteins via a solvent-accessible surface. The carboxypeptidase a inhibitor protein as a model. Theor. Chem. Acc. 105(2), 101–109 (2000)

    Article  Google Scholar 

  50. Patz, C.: On dispersive stability of hamiltonian systems on lattices. PAMM 7(1), 4080033–4080034 (2007)

    Article  Google Scholar 

  51. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Stepanova, M.: Dynamics of essential collective motions in proteins: theory. Phys. Rev. E 76(5), 051918 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. Tzon-Tzer, L., Shiou, S.-H.: Inverses of 2\(\times \)2 block matrices. Comput. Math. Appl. 43(1), 119–129 (2002)

    MathSciNet  MATH  Google Scholar 

  54. Weinan, E., Ming, P.: Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183(2), 241–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, Y., Dominy, J.M., Venturi, D.: Rigorous error estimates for the memory integral in the Mori-Zwanzig formulation. arXiv preprint. arXiv:1708.02235 (2017)

  56. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9, 215–220 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF under Grants DMS-1522617 and DMS-1619661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Li, X. On the Asymptotic Behavior of the Kernel Function in the Generalized Langevin Equation: A One-Dimensional Lattice Model. J Stat Phys 170, 378–398 (2018). https://doi.org/10.1007/s10955-017-1927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1927-3

Keywords

Navigation