Abstract
We present some estimates for the memory kernel function in the generalized Langevin equation, derived using the Mori–Zwanzig formalism from a one-dimensional lattice model, in which the particles interactions are through nearest and second nearest neighbors. The kernel function can be explicitly expressed in a matrix form. The analysis focuses on the decay properties, both spatially and temporally, revealing a power-law behavior in both cases. The dependence on the level of coarse-graining is also studied.
Similar content being viewed by others
References
Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: collinear atom/harmonic chain model. J. Chem. Phys. 61, 4242 (1974)
Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375 (1976)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. HRW International Editions. Holt, Rinehart and Winston, New York (1976)
Baczewski, A.D., Bond, S.D.: Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel. J. Chem. Phys. 139(4), 044107 (2013)
Berkowitz, M., Morgan, J.D., Kouri, D.J., McCammon, J.A.: Memory kernels from molecular dynamics. J. Chem. Phys. 75, 2462 (1981)
Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)
Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Courier Corporation, New York (1975)
Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2007)
Chen, M., Li, X., Liu, C.: Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules. J. Chem. Phys. 141, 064112 (2014)
Chorin, A.J., Stinis, P.: Problem reduction, renormalization, and memory. Commun. Appl. Math. Comput. Sci. 1, 1–27 (2005)
Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl. Acad. Sci. USA 97, 6253–6257 (2000)
Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction with memory. Physica D 166, 239–257 (2002)
Chu, W., Li, X.: The Mori-Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics. arXiv preprint arXiv:1709.05928 (2017)
Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequ. Math. 4, 338–352 (1970)
Curtaroo, S., Ceder, G.: Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett. 88, 255504 (2002)
Dama, J.F., Sinitskiy, A.V., McCullagh, M., Weare, J., Roux, B., Dinner, A.R., Voth, G.A.: The theory of ultra-coarse-graining. 1. General principles. J. Chem. Theory Comput. 9(5), 2466–2480 (2013)
Dobson, M., Luskin, M.: An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM J. Numer. Anal. 47, 2455–2475 (2009)
Español, P.: Dissipative particle dynamics for a harmonic chain: a first-principles derivation. Phys. Rev. E 53(2), 1572 (1996)
Florencio Jr., J., Lee, M.H.: Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31(5), 3231 (1985)
Fricks, J., Yao, L., Elston, T.C., Forest, M.G.: Time-domain methods for diffusive transport in soft matter. SIAM J. Appl. Math. 69(5), 1277–1308 (2009)
Fuller, E.R., Thomson, R.M.: Lattice theories of fracture. Fracture Mechanics of Ceramics. In: Proceedings of the International Symposium, University Park, PA, pp. 507–548 (1978)
Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997)
Hijón, C., Serrano, M., Español, P.: Markovian approximation in a coarse-grained description of atomic systems. J. Chem. Phys. 125, 204101 (2006)
Hijón, C., Español, P., Vanden-Eijnden, E., Delgado-Buscalioni, R.: Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss. 144, 301–322 (2010)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2012)
Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am. Math. Mon. 111(2), 157–159 (2004)
Kauzlarić, D., Meier, J.T., Español, P., Succi, S., Greiner, A., Korvink, J.G.: Bottom-up coarse-graining of a simple graphene model: the blob picture. J. Chem. Phys. 134(6), 064106–064106 (2011)
Kim, J., Sawada, I.: Dynamics of a harmonic oscillator on the bethe lattice. Phys. Rev. E 61(3), R2172 (2000)
Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)
Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255–284 (1966)
Lange, O.F., Grubmüller, H.: Collective Langevin dynamics of conformational motions in proteins. J. Chem. Phys. 124, 214903 (2006)
Leach, A.R.: Molecular Modelling: Principles and Applications. Prentice Hall, Upper Saddle River (2001)
Lee, M.H.: Local dynamics in an infinite harmonic chain. Symmetry 8(4), 22 (2016)
Lee, C.-S., Chen, Y.-Y., Chi-Hua, Y., Hsu, Y.-C., Chen, C.-S.: Semi-analytical solution for the generalized absorbing boundary condition in molecular dynamics simulations. Comput. Mech. 60(1), 23–37 (2017)
Lei, H., Baker, N.A., Li, X.: Data-driven parameterization of the generalized Langevin equation. Proc. Natl. Acad. Sci. 113(50), 14183–14188 (2016)
Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. EPL (Europhys. Lett.) 43(3), 271 (1998)
Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)
Li, X.: A coarse-grained molecular dynamics model for crystalline solids. Int. J. Numer. Methods Eng. 83, 986–997 (2010)
Li, X.: Coarse-graining molecular dynamics models using an extended Galerkin projection. Int. J. Numer. Methods Eng. 99, 157–182 (2014)
Li, X., Weinan, E.: Variational boundary conditions for molecular dynamics simulations of solids at low temperature. Commun. Comput. Phys. 1, 136–176 (2006)
Li, X., Weinan, E.: Boundary conditions for molecular dynamics simulations at finite temperature: treatment of the heat bath. Phys. Rev. B 76, 104107 (2007)
Li, X., Ming, P.B.: On the effect of ghost force in the quasicontinuum method: dynamic problems in one dimension. Commun. Comput. Phys. 15, 647–676 (2014)
Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3), 373-80 (2005)
Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H.: The martini force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)
Mendl, C.B., Spohn, H.: Current fluctuations for anharmonic chains in thermal equilibrium. J. Stat. Mech. Theory Exp. 2015(3), P03007 (2015)
Min, W., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Observation of a power law memory kernel for distance fluctuation within a single protein molecule. In: SPIE Third International Symposium on Fluctuations and Noise, pp. 194–204. International Society for Optics and Photonics, Washington (2005)
Ming, P.B., Yang, J.Z.: Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul. 7, 1838–1875 (2009)
Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423–450 (1965)
Oliva, B., Daura, X., Querol, E., Avilés, F.X., Tapia, O.: A generalized Langevin dynamics approach to model solvent dynamics effects on proteins via a solvent-accessible surface. The carboxypeptidase a inhibitor protein as a model. Theor. Chem. Acc. 105(2), 101–109 (2000)
Patz, C.: On dispersive stability of hamiltonian systems on lattices. PAMM 7(1), 4080033–4080034 (2007)
Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)
Stepanova, M.: Dynamics of essential collective motions in proteins: theory. Phys. Rev. E 76(5), 051918 (2007)
Tzon-Tzer, L., Shiou, S.-H.: Inverses of 2\(\times \)2 block matrices. Comput. Math. Appl. 43(1), 119–129 (2002)
Weinan, E., Ming, P.: Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183(2), 241–297 (2007)
Zhu, Y., Dominy, J.M., Venturi, D.: Rigorous error estimates for the memory integral in the Mori-Zwanzig formulation. arXiv preprint. arXiv:1708.02235 (2017)
Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9, 215–220 (1973)
Acknowledgements
This research was supported by NSF under Grants DMS-1522617 and DMS-1619661.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chu, W., Li, X. On the Asymptotic Behavior of the Kernel Function in the Generalized Langevin Equation: A One-Dimensional Lattice Model. J Stat Phys 170, 378–398 (2018). https://doi.org/10.1007/s10955-017-1927-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-017-1927-3