Journal of Statistical Physics

, Volume 169, Issue 5, pp 989–1018 | Cite as

Scaling Limits and Generic Bounds for Exploration Processes

  • Paola Bermolen
  • Matthieu JonckheereEmail author
  • Jaron Sanders


We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.


Random sequential adsorption Scaling limits Random graphs 


  1. 1.
    Sanders, J., Jonckheere, M., Kokkelmans, S.: Sub-Poissonian statistics of jamming limits in ultracold Rydberg gases. Phys. Rev. Lett. 115, 043002 (2015)CrossRefADSGoogle Scholar
  2. 2.
    Bermolen, P., Jonckheere, M., Moyal, P.: The jamming constant of uniform random graphs. Stoch. Proces. Appl. 127, 2138–2178 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Evans, J.W.: Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281–1329 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Bermolen, P., Jonckheere, M., Larroca, F., Moyal, P.: Estimating the transmission probability in wireless networks with configuration models. ACM Trans. Model. Perform. Eval. Comput. Syst. 1(2), 9:1–9:23 (2016)CrossRefGoogle Scholar
  5. 5.
    Gallagher, T.F.: Rydberg Atoms (Cambridge Monographs on Atomic, Molecular and Chemical Physics). Cambridge University Press, Cambridge (1994)Google Scholar
  6. 6.
    Darling, R., Norris, J.: Differential equation approximations for Markov chains. Probab. Surv. 5, 37–79 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Berkes, I., Liu, W., Wu, W.B.: Komlós-Major-Tusnády approximation under dependence. Ann. Probab. 42(2), 794–817 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Sanders, J.: Stochastic optimization of large-scale complex systems. Ph.D. thesis, Technische Universiteit Eindhoven (2016)Google Scholar
  9. 9.
    Bermolen, P., Jonckheere, M., Sanders, J.: Scaling limits for exploration algorithms. Technical Report (2015)Google Scholar
  10. 10.
    Erdös, P., Rényi, A.: On random graphs, I. Publ. Math. (Debrecen) 6, 290–297 (1959)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  12. 12.
    Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Aiello, W., Graham, F.C., Lu, L.: A random graph model for power law graphs. Exp. Math. 10, 53–66 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Math. 1(1), 91–113 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dhara, S., van Leeuwaarden, J.S.H., Mukherjee, D.: Generalized random sequential adsorption on Erdös–Rényi random graphs. J. Stat. Phys. 164(5), 1217–1232 (2016)CrossRefzbMATHADSMathSciNetGoogle Scholar
  17. 17.
    Dhara, S., van Leeuwaarden, J., Mukherjee, D.: Solvable random network model for disordered sphere packing. arXiv:1611.05019 (2016)
  18. 18.
    Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Proces. Appl. 6(3), 223–240 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent rv’-s, and the sample df. i. Z. Wahrscheinlichkeitstheor. Verw. Geb. 32(1–2), 111–131 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent rv’s, and the sample df. ii. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34(1), 33–58 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McDiarmid, C.: Colouring random graphs. Ann. Oper. Res. 1(3), 183–200 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Teerapabolaan, K.: A bound on the binomial-Poisson relative error. Int. J. Pure Appl. Math. 87(4), 535–540 (2013)Google Scholar
  23. 23.
    Penrose, M.D., Yukich, J.: Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12(1), 272–301 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Penrose, M.D.: Random parking, sequential adsorption, and the jamming limit. Commun. Math. Phys. 218(1), 153–176 (2001)CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    Penrose, M.D.: Random geometric graphs, vol. 5. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill, New York (1987)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.IMERLFacultad de Ingeniería, Universidad de la RepúblicaMontevideoUruguay
  2. 2.Instituto de CálculoUniversidad de Buenos Aires and ConicetBuenos AiresArgentina
  3. 3.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations