Advertisement

Journal of Statistical Physics

, Volume 169, Issue 4, pp 846–875 | Cite as

Phase Transition for the Maki–Thompson Rumour Model on a Small-World Network

  • Elena AgliariEmail author
  • Angelica Pachon
  • Pablo M. Rodriguez
  • Flavia Tavani
Article

Abstract

We consider the Maki–Thompson model for the stochastic propagation of a rumour within a population. In this model the population is made up of “spreaders”, “ignorants” and “stiflers”; any spreader attempts to pass the rumour to the other individuals via pair-wise interactions and in case the other individual is an ignorant, it becomes a spreader, while in the other two cases the initiating spreader turns into a stifler. In a finite population the process will eventually reach an equilibrium situation where individuals are either stiflers or ignorants. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model, in such a way that interactions occur only between nearest-neighbours. This structure is realized starting from a k-regular ring and by inserting, in the average, c additional links in such a way that k and c are tuneable parameters for the population architecture. We prove that this system exhibits a transition between regimes of localization (where the final number of stiflers is at most logarithmic in the population size) and propagation (where the final number of stiflers grows algebraically with the population size) at a finite value of the network parameter c. A quantitative estimate for the critical value of c is obtained via extensive numerical simulations.

Keywords

Maki–Thompson model Phase-transition Small-world network 

Mathematics Subject Classification

60K35 60K37 82B26 

Notes

Acknowledgements

PMR thanks FAPESP (Grants 2015/03868-7 and 2016/11648-0) for financial support. Part of this work was carried out during a stay of PMR at Laboratoire de Probabilités et Modèles Aléatoires, Université Paris-Diderot, and a visit at Università di Torino. He is grateful for their hospitality and support. AP thanks Università di Torino (XVIII tornata Programma di ricerca: “Problemi attuali della matematica 3”) for financial support. EA and FT thank INdAM-GNFM (Progetto Giovani 2016) and Sapienza Università di Roma (Progetto Avvio alla Ricerca 2015) for financial support. The authors are grateful to the anonymous reviewers for their interesting comments suggestions.

References

  1. 1.
    Król, D., Fay, D., Gabryś, B. (eds.): Propagation Phenomena in Real World Networks (Intelligent Systems Reference Library). Springer, Berlin (2015)Google Scholar
  2. 2.
    Holme, P., Saramäki, J. (eds.): Temporal Networks (Understanding Complex Systems). Springer, Berlin (2013)Google Scholar
  3. 3.
    Helbing, D. (ed.): Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior (Understanding Complex Systems). Springer, Berlin (2012)Google Scholar
  4. 4.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26, 521–529 (2002)ADSGoogle Scholar
  6. 6.
    Vazquez, A., Moreno, Y.: Resilience to damage of graphs with degree correlations. Phys. Rev. E 67, 015101(R) (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social neworks. Phys. A 374, 457–470 (2007)CrossRefGoogle Scholar
  9. 9.
    Kimmel, A.J.: Rumors and rumour control. J. Behav. Financ. 5, 134 (2004)CrossRefGoogle Scholar
  10. 10.
    Kosfeld, M.: Rumours and markets. J. Math. Econ. 41, 646 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Agliari, E., Burioni, R., Cassi, D., Neri, F.M.: Word-of-mouth and dynamical inhomogeneous markets: an efficiency measure and optimal sampling policies for the pre-launch stage. IMA J. Manag. Math. 21, 67 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Agliari, E., Burioni, R., Cassi, D., Neri, F.M.: Universal features of information spreading efficiency on \(d\)-dimensional lattices. Phys. Rev. E 75, 021119 (2007)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maki, D.P.: Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  14. 14.
    Sudbury, A.: The proportion of the population never hearing a rumour. J. Appl. Probab. 22, 443–446 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Watson, R.: On the size of a rumour. Stoch. Process Appl. 27, 141–149 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lebensztayn, E.: A large deviations principle for the Maki–Thompson rumour model. J. Math. Anal. Appl. 432, 142–155 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pittel, B.: On a Daley–Kendal model of rumours. J. Appl. Probab. 27, 14–27 (1987)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lefevre, C., Picard, P.: Distribution of the final extent of a rumour process. J. Appl. Probab. 31, 244 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Noymer, A.: The transmission and persistence of urban legends: sociological applications of age-structured epidemic models. J. Math. Sociol. 25, 299 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gani, J.: The Maki–Thompson rumour model: a detailed analysis. Environ. Modell. Softw. 15, 721–725 (2000)CrossRefGoogle Scholar
  21. 21.
    Lebensztayn, E., Machado, F.P., Rodríguez, P.M.: On the behaviour of a rumour process with random stifling. Environ. Modell. Softw. 26, 517–522 (2011)CrossRefGoogle Scholar
  22. 22.
    Lebensztayn, E., Machado, F., Rodríguez, P.M.: Limit theorems for a general stochastic rumour model. SIAM J. Appl. Math. 71, 1476–1486 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Coletti, C.F., Rodríguez, P.M., Schinazi, R.B.: A spatial stochastic model for rumor transmission. J. Stat. Phys. 147, 375–381 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Newman, M.E.J.: Networks. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  27. 27.
    Zanette, D.H.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64, (R)050901 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4–6), 341–346 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60(6), 7332–7342 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Lalley, S., Su, W.: Contact, processes on random regular graphs. Ann. Appl. Probab. 27, 2061–2097 (2017)Google Scholar
  31. 31.
    Zanette, D.H.: Dynamics of rumour propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumour spreading in complex networks. Phys. Rev. E 69, 066130 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Athreya, K.B., Ney, P.E.: Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer, Heidelberg (1972)Google Scholar
  35. 35.
    Durrett, R.: Probability: Theory and Examples, 3rd edn. Thomson, Brooks Cole, Belmont (2005)zbMATHGoogle Scholar
  36. 36.
    Karlin, S., Taylor, H.M.: An Introduction to Stochastic Modeling, Third Edition edn. Academic Press, Orlando (1998)zbMATHGoogle Scholar
  37. 37.
    Dwass, M.: The total progeny in a branching process and a related random walk. J. Appl. Probab. 6, 682–686 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Agliari, E., Barra, A., Camboni, F.: Criticality in diluted ferromagnets. J. Stat. Mech. P10003 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Sapienza Università di RomaRomeItaly
  2. 2.Università di TorinoTurinItaly
  3. 3.Universidade de São PauloSão CarlosBrazil

Personalised recommendations