Skip to main content

Advertisement

Log in

On Concentration Inequalities and Their Applications for Gibbs Measures in Lattice Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Gibbs measures on the configuration space \(S^{{\mathbb {Z}}^d}\), where mostly \(d\ge 2\) and S is a finite set. We start by a short review on concentration inequalities for Gibbs measures. In the Dobrushin uniqueness regime, we have a Gaussian concentration bound, whereas in the Ising model (and related models) at sufficiently low temperature, we control all moments and have a stretched-exponential concentration bound. We then give several applications of these inequalities whereby we obtain various new results. Amongst these applications, we get bounds on the speed of convergence of the empirical measure in the sense of Kantorovich distance, fluctuation bounds in the Shannon–McMillan–Breiman theorem, fluctuation bounds for the first occurrence of a pattern, as well as almost-sure central limit theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M., Chazottes, J.-R., Redig, F., Verbitskiy, E.: Exponential distribution for the occurrence of rare patterns in Gibbsian random fields. Commun. Math. Phys. 246(2), 269–294 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bissacot, R., Endo, E.O., van Enter, A.C., Ny, A.L .: Entropic repulsion and lack of the \(g\)-measure property for Dyson models. Preprint (2017)

  3. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  5. Chatterjee, S.: Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1–2), 305–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatterjee, S., Dey, P.S.: Applications of Stein’s method for concentration inequalities. Ann. Probab. 38(6), 2443–2485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazottes, J.-R., Redig, F.: Occurrence, repetition and matching of patterns in the low-temperature Ising model. J. Stat. Phys. 121(3–4), 579–605 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chazottes, J.-R., Redig, F.: Concentration inequalities for Markov processes via coupling. Electron. J. Probab. 14(40), 1162–1180 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Chazottes, J.-R., Collet, P., Külske, C., Redig, F.: Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields 137(1–2), 201–225 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Dedecker, J.: Exponential inequalities and functional central limit theorems for random fields. ESAIM Probab. Stat. 5, 77–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (2009)

    MATH  Google Scholar 

  12. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  13. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Classics in Mathematics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  14. El Machkouri, M.: Théorèmes limites pour les champs et les suites stationnaires de variables aléatoires réelles. Thèse de doctorat de l’Université de Rouen (2002)

  15. Eizenberg, A., Kifer, Y., Weiss, B.: Large deviations for \({\mathbb{Z}}^d\)-actions. Commun. Math. Phys. 164(3), 433–454 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gallo, S., Takahashi, D.: Attractive regular stochastic chains: perfect simulation and phase transition. Ergod. Theory Dynam. Syst. 34(5), 1567–1586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Gross, L.: Decay of correlations in classical lattice models at high temperature. Commun. Math. Phys. 68(1), 9–27 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Keller, G.: Equilibrium states in ergodic theory. In: London Mathematical Society Student Texts. vol. 42 (1998)

  20. Kieffer, J.C.: A generalized Shannon–McMillan theorem for the action of an amenable group on a probability space. Ann. Probab. 3(6), 1031–1037 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kontorovich, A., Raginsky, M.: Concentration of measure without independence: a unified approach via the martingale method. Preprint (2016). http://arxiv.org/abs/1602.00721

  22. Kolmogorov, A.N., Tihomirov, V.M.: \(\varepsilon \)-Entropy and \(\varepsilon \)-capacity of sets in functional space. Am. Math. Soc. Transl. 2(17), 277–364 (1961)

    MathSciNet  Google Scholar 

  23. Külske, C.: Concentration inequalities for functions of Gibbs fields with applications to diffraction and random Gibbs measures. Commun. Math. Phys. 239, 29–51 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Künsch, H.: Decay of correlations under Dobrushin’s uniqueness condition and its applications. Commun. Math. Phys. 84(2), 207–222 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ledoux, M.: The Concentration of Mmeasure Phenomenon, Mathematical Surveys and Monographs 89. American Mathematical Society, Providence (2001)

  26. McCoy, B., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  27. Maes, C., Redig, F., Shlosman, S., Van Moffaert, A.: Percolation, path large deviations and weakly Gibbs states. Commun. Math. Phys. 209(2), 517–545 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Martin-Löf, A.: Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Commun. Math. Phys. 32, 75–92 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  29. Marton, K.: Bounding \({\bar{d}}\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marton, K.: Measure concentration and strong mixing. Studia Sci. Math. Hung. 40(1–2), 95–113 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Marton, K.: Measure concentration for Euclidean distance in the case of dependent random variables. Ann. Probab. 32(3B), 2526–2544 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rüschendorf, L., Sei, T.: On optimal stationary couplings between stationary processes. Electron. J. Probab. 17(17), 20 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Salas, J., Sokal, A.D.: Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Stat. Phys. 86(3–4), 551–579 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Schonmann, R.: Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Commun. Math. Phys. 112(3), 409–422 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. Tempelman, A.: Ergodic theorems for group actions. Informational and thermodynamical aspects. In: Mathematics and its Applications, vol. 78. Kluwer Academic Publishers Group, Dordrecht (1992)

  36. van Handel, R: Probability in high dimension. In: Lecture Notes (2014). https://www.princeton.edu/~rvan/ORF570.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-R. Chazottes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chazottes, JR., Collet, P. & Redig, F. On Concentration Inequalities and Their Applications for Gibbs Measures in Lattice Systems. J Stat Phys 169, 504–546 (2017). https://doi.org/10.1007/s10955-017-1884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1884-x

Keywords

Navigation