Journal of Statistical Physics

, Volume 168, Issue 6, pp 1180–1190 | Cite as

Information Transmission and Criticality in the Contact Process



In the present paper, we study the relation between criticality and information transmission in the one-dimensional contact process with infection parameter \(\lambda .\) We introduce a notion of sensitivity of the process to its initial condition and prove that it increases not only for values of \(\lambda < \lambda _c, \) the value of the critical parameter, but keeps increasing even after \( \lambda _c , \) before finally starting to decrease for values of \(\lambda \) sufficiently above \(\lambda _c.\) This provides a counterexample to the common belief that associates maximal information transmission to criticality.


Contact process Criticality Information transmission Duality and coupling 

Mathematics Subject Classification

60K35 82B27 



Many thanks to Errico Presutti and Antonio Carlos Roque da Silva Filho for stimulating discussions about this subject. We also thank two anonymous referees for helpful comments and suggestions. We thank the Gran Sasso Science Institute (GSSI) for hospitality and support. This research has been conducted as part of the project Labex MME-DII (ANR11-LBX-0023-01), USP project Mathematics, computation, language and the brain and FAPESP project Research, Innovation and Dissemination Center for Neuromathematics (Grant 2013/07699-0). AG is partially supported by CNPq fellowship (Grant 311 719/2016-3.)


  1. 1.
    Bak, P.P.: How Nature Works. Springer, New York (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Barnett, L.L., Lizier, J.T.J.T., Harré, M.M., Seth, A.K.A.K., Bossomaier, T.T.: Information flow in a kinetic Ising model peaks in the disordered phase. Phys. Rev. Lett. 111, 177203 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Beggs, J.M.J.M., Plenz, D.D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)Google Scholar
  4. 4.
    Bertein, F.F., Galves, A.A.: Une classe de systèmes de particules stable par association. Z. Wahr. Verw. Gebiete 41, 73–85 (1977)CrossRefMATHGoogle Scholar
  5. 5.
    Bezuidenhout, C.C., Grimmett, G.R.G.R.: The critical contact process dies out. Ann. Probab. 18, 1462–1482 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cavagna, A.A., Cimarelli, A.A., Giardina, I.I., Parisi, G.G., Santagati, R.R., Stefanini, F.F., Viale, M.M.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865–11870 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Erten, E.Y., Lizier, J.T., Piraveenan, M., Prokopenko, M.: Criticality and Information dynamics in epidemiological models. Entropy 19(5), 194 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Galves, A.A., Garcia, N.L.N.L., Prieur, C.C.: Perfect simulation of a coupling achieving the \({\bar{d}}\)-distance between ordered pairs of binary chains of infinite order. J. Stat. Phys. 141, 669–682 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Harris, T.E.T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Harris, T.E.T.E.: On a class of set-valued Markov processes. Ann. Probab. 4, 175–194 (1976)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Harris, T.E.T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6, 355–378 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kinouchi, O.O., Copelli, M.M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006)CrossRefGoogle Scholar
  13. 13.
    Liggett, T.M.T.M.: Interacting Particle Systems. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  14. 14.
    Schreiber, T.T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Vanni, F.F., Luković, M.M., Grigolini, P.P.: Criticality and transmission of information in a swarm of cooperative units. Phys. Rev. Lett. 107, 078103 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Vijayaraghavan, V.S., James, R.G., Crutchfield, J.P.: Anatomy of a spin: the information-theoretic structure of classical spin systems. Entropy 19(5), 214 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Gran Sasso Science InstituteL’AquilaItaly
  2. 2.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  3. 3.AGM, CNRS-UMR 8088Université de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations