Skip to main content
Log in

Gibbsian Stationary Non-equilibrium States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arita, C., Krapivsky, P.L., Mallick, K.: Variational calculation of transport coefficients in diffusive lattice gases. arXiv:1611.07719

  2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory. Algorithms and Applications. Springer Monographs in Mathematics. Springer, London (2001)

    MATH  Google Scholar 

  3. Barré, J., Bernardin, C., Chetrite, R.: Density large deviations for multidimensional stochastic hyperbolic conservation laws. arXiv:1702.03769

  4. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. 2007(07), P07014 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertini, L., Faggionato, A., Gabrielli, D.: Large deviations of the empirical flow for continuous time Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 51(3), 867900 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bierkens, J.: Non-reversible metropolis-hastings. Stat. Comput. 26(6), 1213–1228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge, CambridgeMathematical Library (1993)

    MATH  Google Scholar 

  8. Borodin, A., Bufetov, A.: An irreversible local Markov chain that preserves the six vertex model on a torus. arXiv:1509.05070

  9. Corwin, I., Toninelli, F.L.: Stationary measure of the driven two-dimensional q-Whittaker particle system on the torus. Electron. Commun. Probab. 21, Paper No. 44 (2016)

  10. Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc. (N.S.) 46(2), 179–205 (2009)

  11. Fajfrovà, L., Gobron, T., Saada, E.: Invariant measures of mass migration processes. Electron. J. Probab. 21(60), 152 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260, 3rd edn. Springer, Heidelberg (2012)

  13. Gabrielli, D., Krapivsky, P.L.: in preparation

  14. Gabrielli, D., Valente, C.: Which random walks are cyclic? ALEA. Lat. Am. J. Probab. Math. Stat. 9, 231–267 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Gabrielli, D., Jona-Lasinio, G., Landim, C., Vares, M.E.: Microscopic reversibility and thermodynamic fluctuations Boltzmann’s legacy 150 years after his birth (Rome, 1994), 7987, Atti Convegni Lincei, 131 Accad. Naz. Lincei, Rome (1994)

    Google Scholar 

  16. Godrèche, C.: Rates for irreversible Gibbsian Ising models. J. Stat. Mech. Theory Exp. 2013(5), P05011 (2013)

    Article  MathSciNet  Google Scholar 

  17. Godrèche, C., Luck, J.M.: Single-spin-flip dynamics of the Ising chain. J. Stat. Mech. Theory Exp. 2015(5), P05033 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kaiser, M., Jack, R.L., Zimmer, J.: Acceleration of convergence to equilibrium in Markov chains by breaking detailed balance. arXiv:1611.06509

  19. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Landau, D.P., Binder, K.: A guide to Monte Carlo Simulations in Statistical Physics, 4th edn. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  21. Liggett, T.M.: Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften. Springer, New York (1985)

    Book  MATH  Google Scholar 

  22. Lovász, L.: Discrete Analytic Functions: An Exposition. Surveys in Differential Geometry, vol. IX, 241273, Surv. Differ. Geom., 9, Int. Press, Somerville, MA (2004)

  23. Luck, J.M., Godrèche, C.: Nonequilibrium stationary states with Gibbs measure for two or three species of interacting particles. J. Stat. Mech. Theory Exp. 2006(8), P08009 (2006)

    Article  MathSciNet  Google Scholar 

  24. MacQueen, J.: Circuit processes. Ann. Probab. 9, 604–610 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nagahata, Y.: The gradient condition for one-dimensional symmetric exclusion processes. J. Stat. Phys. 91(3/4), 587–602 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Procacci, A., Scoppola, B., Scoppola, E.: Effects of boundary conditions on irreversible dynamics. arXiv:1703.04511

  27. Rey-Bellet, L., Spiliopoulos, K.: Improving the convergence of reversible samplers. J. Stat. Phys. 164(3), 472494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schrama, R.D., Barkema, G.T.: Monte Carlo methods beyond detailed balance. Physica A 418, 8893 (2015)

    Google Scholar 

  29. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)

    Book  MATH  Google Scholar 

  30. Varadhan, S.R.S., Yau, H.T.: Diffusive limit of lattice gas with mixing conditions. Asian J. Math. 1(4), 623678 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

D. G. wrote part of this work during his stay at the Institut Henri Poincare - Centre Emile Borel during the trimester Stochastic Dynamics Out of Equilibrium and thanks this institution for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gabrielli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Carlo, L., Gabrielli, D. Gibbsian Stationary Non-equilibrium States. J Stat Phys 168, 1191–1222 (2017). https://doi.org/10.1007/s10955-017-1852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1852-5

Keywords

Mathematics Subject Classification

Navigation