Abstract
We consider the limiting spectral distribution of matrices of the form \(\frac{1}{2b_{n}+1} (R + X)(R + X)^{*}\), where X is an \(n\times n\) band matrix of bandwidth \(b_{n}\) and R is a non random band matrix of bandwidth \(b_{n}\). We show that the Stieltjes transform of ESD of such matrices converges to the Stieltjes transform of a non-random measure. And the limiting Stieltjes transform satisfies an integral equation. For \(R=0\), the integral equation yields the Stieltjes transform of the Marchenko–Pastur law.
Similar content being viewed by others
References
Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)
Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, Second Series 19(3), 357–367 (1967)
Bai, Z., et al.: Circular law. Ann. Probab. 25(1), 494–529 (1997)
Bordenave, C., Guionnet, A.: Localization and delocalization of eigenvectors for heavy-tailed random matrices. Probab. Theory Relat. Fields 157(3–4), 885–953 (2013)
Casati, G., Molinari, L., Izrailev, F.: Scaling properties of band random matrices. Phys. Rev. Lett. 64(16), 1851–1854 (1990)
Devillard, P.: Statistics of transfer matrices for disordered quantum thin metallic slabs. J. Stat. Phys. 62(1–2), 373–387 (1991)
Dozier, R.B., Silverstein, J.W.: On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivar. Anal. 98(4), 678–694 (2007)
Fyodorov, Y.V., Chubykalo, O., Izrailev, F., Casati, G.: Wigner random banded matrices with sparse structure: local spectral density of states. Phys. Rev. Lett. 76(10), 1603 (1996)
Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a \(\sigma \)-model approach. Phys. Rev. Lett. 67(18), 2405 (1991)
Fyodorov, Y.V., Mirlin, A.D.: Statistical properties of random banded matrices with strongly fluctuating diagonal elements. Phys. Rev. B 52(16), R11580 (1995)
Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6(3), 440–449 (1965)
Girko, V.L.: Circular law. Theory Probab. Appl. 29(4), 694–706 (1985)
Guionnet, A., Zegarlinksi, B.: Lectures on Logarithmic Sobolev Inequalities. Springer, Berlin (1801)
Jacquod, P., Shepelyansky, D.: Hidden Breit–Wigner distribution and other properties of random matrices with preferential basis. Phys. Rev. Lett. 75(19), 3501 (1995)
Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Advances in Mathematics 11(3), 267–288 (1973)
Mackey, L., Jordan, M.I., Chen, R.Y., Farrell, B., Tropp, J.A., et al.: Matrix concentration inequalities via the method of exchangeable pairs. Ann. Probab. 42(3), 906–945 (2014)
Mehta, M.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)
Scharf, R.: Kicked rotator for a spin-1/2 particle. J. Phys. A Math. Gen. 22(19), 4223 (1989)
Shepelyansky, D.: Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73(19), 2607 (1994)
Silverstein, J.W.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivar. Anal. 55(2), 331–339 (1995)
Silverstein, J.W., Bai, Z.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54(2), 175–192 (1995)
Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10(02), 261–307 (2008)
Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of esds and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)
Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)
Tropp, J.A.: An Introduction to Matrix Concentration Inequalities. arXiv preprint arXiv:1501.01571 (2015)
Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(3), 548–564 (1955)
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
In this section we list the results which were used in the Sect. 3.
Lemma 8.1
(Lemma 2.3, [21]) Let P, Q be two rectangular matrices of the same size. Then for any \(x,y\ge 0\),
Lemma 8.2
(Sherman–Morrison formula) Let \(P_{n\times n}\) and \((P+vv^{*})\) be invertible matrices, where \(v\in \mathbb {C}^{n}\). Then we have
In particular,
Lemma 8.3
(Lemma 2.6, [21]) Let P, Q be \(n\times n\) matrices such that Q is Hermitian. Then for any \(r\in \mathbb {C}^{n}\) and \(z=E+i\eta \in \mathbb {C}^{+}\) we have
Lemma 8.4
([2], Lemma 1) Let \(\{X_{n}\}_{n}\) be a sequence of random variables such that \(|X_{n}|\le K_{n}\) almost surely, and \(\mathbb {E}[X_{i_{1}}X_{i_{2}}\ldots X_{i_{k}}]=0\) for all \(k\in \mathbb {N},\;i_{1}<i_{2}<\cdots <i_{k}\). Then for every \(\lambda \in \mathbb {R}\) we have
In particular, for any \(t>0\) we have
Lemma 8.5
Let P, Q be two \(n\times n\) matrices, then
where \(\Vert \cdot \Vert \) denotes the total variation norm between probability measures.
Proof
By Cauchy’s interlacing property,
\(\square \)
Lemma 8.6
([4, Lemma C.3]) Let P and Q be \(n\times n\) Hermition matrices, and \(I\subset \{1,2,\ldots , n\}\), then
Lemma 8.7
Let \(C_{j}\) and \(B_{j}\) be defined in (6), \(r_{j}\) be the jth column of R, and \(I_{j}\subset \{1,2,\ldots , n\}\) be same as (1), and \(z\in \mathbb {C}^{+}\). Then
Proof
Let \(\mathcal {F}_{l}=\sigma \{y_{1},\ldots ,y_{l}\}\) be the \(\sigma \)-algebra generated by the column vectors \(y_{1},\ldots , y_{l}\). Then, we can write
Notice that for any two matrices P, Q, we have \(\text {rank}(PP^{*}-QQ^{*})\le 2\text {rank}(P-Q)\) (from Lemma 8.5). Therefore, using the Lemmas 8.6 and 8.4, we can conclude the result. The remaining three equations can also be proved in the same way. \(\square \)
Rights and permissions
About this article
Cite this article
Jana, I., Soshnikov, A. Distribution of Singular Values of Random Band Matrices; Marchenko–Pastur Law and More. J Stat Phys 168, 964–985 (2017). https://doi.org/10.1007/s10955-017-1844-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-017-1844-5