Skip to main content
Log in

Distribution of Singular Values of Random Band Matrices; Marchenko–Pastur Law and More

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the limiting spectral distribution of matrices of the form \(\frac{1}{2b_{n}+1} (R + X)(R + X)^{*}\), where X is an \(n\times n\) band matrix of bandwidth \(b_{n}\) and R is a non random band matrix of bandwidth \(b_{n}\). We show that the Stieltjes transform of ESD of such matrices converges to the Stieltjes transform of a non-random measure. And the limiting Stieltjes transform satisfies an integral equation. For \(R=0\), the integral equation yields the Stieltjes transform of the Marchenko–Pastur law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, Second Series 19(3), 357–367 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z., et al.: Circular law. Ann. Probab. 25(1), 494–529 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordenave, C., Guionnet, A.: Localization and delocalization of eigenvectors for heavy-tailed random matrices. Probab. Theory Relat. Fields 157(3–4), 885–953 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casati, G., Molinari, L., Izrailev, F.: Scaling properties of band random matrices. Phys. Rev. Lett. 64(16), 1851–1854 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Devillard, P.: Statistics of transfer matrices for disordered quantum thin metallic slabs. J. Stat. Phys. 62(1–2), 373–387 (1991)

    Article  ADS  Google Scholar 

  7. Dozier, R.B., Silverstein, J.W.: On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivar. Anal. 98(4), 678–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fyodorov, Y.V., Chubykalo, O., Izrailev, F., Casati, G.: Wigner random banded matrices with sparse structure: local spectral density of states. Phys. Rev. Lett. 76(10), 1603 (1996)

    Article  ADS  Google Scholar 

  9. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a \(\sigma \)-model approach. Phys. Rev. Lett. 67(18), 2405 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fyodorov, Y.V., Mirlin, A.D.: Statistical properties of random banded matrices with strongly fluctuating diagonal elements. Phys. Rev. B 52(16), R11580 (1995)

    Article  ADS  Google Scholar 

  11. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6(3), 440–449 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Girko, V.L.: Circular law. Theory Probab. Appl. 29(4), 694–706 (1985)

    Article  MathSciNet  Google Scholar 

  13. Guionnet, A., Zegarlinksi, B.: Lectures on Logarithmic Sobolev Inequalities. Springer, Berlin (1801)

    Google Scholar 

  14. Jacquod, P., Shepelyansky, D.: Hidden Breit–Wigner distribution and other properties of random matrices with preferential basis. Phys. Rev. Lett. 75(19), 3501 (1995)

    Article  ADS  Google Scholar 

  15. Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Advances in Mathematics 11(3), 267–288 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mackey, L., Jordan, M.I., Chen, R.Y., Farrell, B., Tropp, J.A., et al.: Matrix concentration inequalities via the method of exchangeable pairs. Ann. Probab. 42(3), 906–945 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mehta, M.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)

    MATH  Google Scholar 

  18. Scharf, R.: Kicked rotator for a spin-1/2 particle. J. Phys. A Math. Gen. 22(19), 4223 (1989)

    Article  ADS  Google Scholar 

  19. Shepelyansky, D.: Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73(19), 2607 (1994)

    Article  ADS  Google Scholar 

  20. Silverstein, J.W.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivar. Anal. 55(2), 331–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Silverstein, J.W., Bai, Z.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54(2), 175–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10(02), 261–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of esds and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tropp, J.A.: An Introduction to Matrix Concentration Inequalities. arXiv preprint arXiv:1501.01571 (2015)

  26. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(3), 548–564 (1955)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Jana.

Appendix

Appendix

In this section we list the results which were used in the Sect. 3.

Lemma 8.1

(Lemma 2.3, [21]) Let P, Q be two rectangular matrices of the same size. Then for any \(x,y\ge 0\),

$$\begin{aligned} \mu _{(P+Q)(P+Q)^{*}}(x+y,\infty )\le \mu _{PP^{*}}(x,\infty )+\mu _{QQ^{*}}(y,\infty ). \end{aligned}$$

Lemma 8.2

(Sherman–Morrison formula) Let \(P_{n\times n}\) and \((P+vv^{*})\) be invertible matrices, where \(v\in \mathbb {C}^{n}\). Then we have

$$\begin{aligned} (P+vv^{*})^{-1}=P^{-1}-\frac{P^{-1}vv^{*}P^{-1}}{1+v^{*}P^{-1}v}. \end{aligned}$$

In particular,

$$\begin{aligned} v^{*}(P+vv^{*})^{-1}=\frac{v^{*}P^{-1}}{1+v^{*}P^{-1}v}. \end{aligned}$$

Lemma 8.3

(Lemma 2.6, [21]) Let P, Q be \(n\times n\) matrices such that Q is Hermitian. Then for any \(r\in \mathbb {C}^{n}\) and \(z=E+i\eta \in \mathbb {C}^{+}\) we have

$$\begin{aligned} \left| \text {tr}\left( (Q-zI)^{-1}-(Q+rr^{*}-zI)^{-1}\right) P\right| =\left| \frac{r^{*}(Q-zI)^{-1}P(Q-zI)^{-1}r}{1+r^{*}(Q-zI)^{-1}r}\right| \le \frac{\Vert P\Vert }{\eta }. \end{aligned}$$

Lemma 8.4

([2], Lemma 1) Let \(\{X_{n}\}_{n}\) be a sequence of random variables such that \(|X_{n}|\le K_{n}\) almost surely, and \(\mathbb {E}[X_{i_{1}}X_{i_{2}}\ldots X_{i_{k}}]=0\) for all \(k\in \mathbb {N},\;i_{1}<i_{2}<\cdots <i_{k}\). Then for every \(\lambda \in \mathbb {R}\) we have

$$\begin{aligned} \mathbb {E}\left[ \exp \left\{ \lambda \sum _{i=1}^{n}X_{i}\right\} \right] \le \exp \left\{ \frac{\lambda ^{2}}{2}\sum _{i=1}^{n}K_{i}^{2}\right\} . \end{aligned}$$

In particular, for any \(t>0\) we have

$$\begin{aligned} \mathbb {P}\left( \left| \sum _{i=1}^{n}X_{i}\right| >t\right) \le 2\exp \left\{ -\frac{t^{2}}{2\sum _{i=1}^{n}K_{i}^{2}}\right\} . \end{aligned}$$

Lemma 8.5

Let PQ be two \(n\times n\) matrices, then

$$\begin{aligned} \Vert \mu _{PP^{*}}-\mu _{QQ^{*}}\Vert \le \frac{2}{n}rank(P-Q), \end{aligned}$$

where \(\Vert \cdot \Vert \) denotes the total variation norm between probability measures.

Proof

By Cauchy’s interlacing property,

$$\begin{aligned} \Vert \mu _{PP^{*}}-\mu _{QQ^{*}}\Vert\le & {} \frac{1}{n}\text {rank}(PP^{*}-QQ^{*})\\\le & {} \frac{1}{n}\text {rank}((P-Q)P^{*})+\frac{1}{n}\text {rank}(Q(P-Q)^{*})\\\le & {} \frac{2}{n}\text {rank}(P-Q). \end{aligned}$$

\(\square \)

Lemma 8.6

([4, Lemma C.3]) Let P and Q be \(n\times n\) Hermition matrices, and \(I\subset \{1,2,\ldots , n\}\), then

$$\begin{aligned} \left| \sum _{k\in I}(P-zI)^{-1}_{kk}-\sum _{k\in I}(Q-zI)_{kk}^{-1}\right| \le \frac{2}{\mathfrak {I}(z)}\text {rank}(P-Q). \end{aligned}$$

Lemma 8.7

Let \(C_{j}\) and \(B_{j}\) be defined in (6), \(r_{j}\) be the jth column of R, and \(I_{j}\subset \{1,2,\ldots , n\}\) be same as (1), and \(z\in \mathbb {C}^{+}\). Then

$$\begin{aligned}&\mathbb {P}\left( \left| \sum _{k\in I_{j}}(C_{j}^{-1})_{kk}-\mathbb {E}\sum _{k\in I_{j}}(C_{j}^{-1})_{kk}\right|>t\right) \le 2\exp \left\{ -\frac{\mathfrak {I}(z)^{2}t^{2}}{32n}\right\} \\&\mathbb {P}\left( \left| \sum _{k\in I_{j}}(C_{j}^{-1}B_{j}^{-1})_{kk}-\mathbb {E}\sum _{k\in I_{j}}(C_{j}^{-1}B_{j}^{-1})_{kk}\right|>t\right) \le 2\exp \left\{ -\frac{\mathfrak {I}(z)^{2}t^{2}}{32n}\right\} \\&\mathbb {P}\left( \left| \sum _{k\in I_{j}}(C_{j}^{-1}r_{j}r_{j}^{*}C_{j}^{-1*})_{kk}-\mathbb {E}\sum _{k\in I_{j}}(C_{j}^{-1}r_{j}r_{j}^{*}C_{j}^{-1*})_{kk}\right|>t\right) \le 2\exp \left\{ -\frac{\mathfrak {I}(z)^{2}t^{2}}{32n}\right\} \\&\mathbb {P}\left( \left| \sum _{k\in I_{j}}(C_{j}^{-1}B_{j}^{-1}r_{j}r_{j}^{*}B^{-1*}C_{j}^{-1*})_{kk}-\mathbb {E}\sum _{k\in I_{j}}(C_{j}^{-1}B_{j}^{-1}r_{j}r_{j}^{*}B^{-1*}C_{j}^{-1*})_{kk}\right| >t\right) \\&\qquad \le 2\exp \left\{ -\frac{\mathfrak {I}(z)^{2}t^{2}}{32n}\right\} . \end{aligned}$$

Proof

Let \(\mathcal {F}_{l}=\sigma \{y_{1},\ldots ,y_{l}\}\) be the \(\sigma \)-algebra generated by the column vectors \(y_{1},\ldots , y_{l}\). Then, we can write

$$\begin{aligned}&\sum _{k\in I_{j}}(C_{j}^{-1})_{kk}-\mathbb {E}\sum _{k\in I_{j}}(C_{j}^{-1})_{kk}=\sum _{l=1}^{n}\left[ \mathbb {E}\left\{ \left. \sum _{k\in I_{j}}(C_{j}^{-1})_{kk}\right| \mathcal {F}_{l}\right\} -\mathbb {E}\left\{ \left. \sum _{k\in I_{j}}(C_{j}^{-1})_{kk}\right| \mathcal {F}_{l-1}\right\} \right] . \end{aligned}$$

Notice that for any two matrices PQ, we have \(\text {rank}(PP^{*}-QQ^{*})\le 2\text {rank}(P-Q)\) (from Lemma 8.5). Therefore, using the Lemmas 8.6 and 8.4, we can conclude the result. The remaining three equations can also be proved in the same way. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, I., Soshnikov, A. Distribution of Singular Values of Random Band Matrices; Marchenko–Pastur Law and More. J Stat Phys 168, 964–985 (2017). https://doi.org/10.1007/s10955-017-1844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1844-5

Keywords

Navigation