Skip to main content
Log in

Midpoint Distribution of Directed Polymers in the Stationary Regime: Exact Result Through Linear Response

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We obtain an exact result for the midpoint probability distribution function (pdf) of the stationary continuum directed polymer, when averaged over the disorder. It is obtained by relating that pdf to the linear response of the stochastic Burgers field to some perturbation. From the symmetries of the stochastic Burgers equation we derive a fluctuation–dissipation relation so that the pdf gets given by the stationary two space-time points correlation function of the Burgers field. An analytical expression for the latter was obtained by Imamura and Sasamoto (J Stat Phys 150:908–939, 2013), thereby rendering our result explicit. In the large length limit that implies that the pdf is nothing but the scaling function \(f_{\mathrm{KPZ}}(y)\) introduced by Prähofer and Spohn (J Stat Phys 115(1):255–279, 2004). Using the KPZ-universality paradigm, we find that this function can therefore also be interpreted as the pdf of the position y of the maximum of the Airy process minus a parabola and a two-sided Brownian motion. We provide a direct numerical test of the result through simulations of the Log-Gamma polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. There are also some crossover classes, see [24, 27] for review.

  2. We refer the reader to Sect. 3.1 for the relation between that part of our work and the literature.

  3. This definition of the model is formal and contains some well-known caveats associated with the use of a rough disordered potential. We refer to [24] for more details on these issues. A more physicist-oriented discussion can also be found in [7].

  4. The (i) and (ii) requirements can be respectively thought of as setting the parameter in front of the parabola and choosing the variance of the Brownian motion and Airy process to be as in Eq. (20)

  5. We refer the reader to [73] for the discussion of the subtleties underlying the derivation of the MSR action, in particular the presence/absence of a Jacobian term in the action.

  6. The reason why we introduce a different symbol for the average over the MSR-action is that correlations function involving the response field \(\tilde{u}\) do not a priori have a meaning in the stochastic Burgers theory.

  7. Here we note that there seems to be some misprints in the arXiv version (v1) of [55], and here we follow the published version.

References

  1. Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708–2711 (1985)

    Article  ADS  Google Scholar 

  2. Kardar, M., Zhang, Y.-C.: Scaling of directed polymers in random media. Phys. Rev. Lett. 58, 2087–2090 (1987)

    Article  ADS  Google Scholar 

  3. Kardar, M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bouchaud, J.P., Orland, H.: On the bethe ansatz for random directed polymers. J. Stat. Phys. 61(3), 877–884 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Imbrie, J., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123(4), 529–534 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Thiery, T.: Analytical methods and field theory for disordered systems. PhD Thesis, PSL Research University, ENS Paris-Ecole Normale Supérieure de Paris (2016)

  8. Comets, F., Shiga, T., Yoshida, N., et al.: Probabilistic analysis of directed polymers in a random environment: a review. Adv. Stud. Pure Math. 39, 115–142 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Comets, F.: Directed polymers in random environments: école d’été de probabilités de saint-flour xlvi–2016 (2017)

  10. Blatter, G., Feigel’man, M., Geshkenbein, V., Larkin, A., Vinokur, V.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  11. Lemerle, S., Ferré, J., Chappert, C., Mathet, V., Giamarchi, T., Le Doussal, P.: Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849 (1998)

    Article  ADS  Google Scholar 

  12. Gueudré, T., Dobrinevski, A., Bouchaud, J.-P.: Explore or exploit? A generic model and an exactly solvable case. Phys. Rev. Lett. 112, 050602 (2014)

    Article  ADS  Google Scholar 

  13. Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51, 817–840 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fisher, D., Huse, D.: Wetting transitions: a functional renormalization-group approach. Phys. Rev. B 32, 247–256 (1985)

    Article  ADS  Google Scholar 

  15. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  16. Barabási, A.-L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–415 (1995)

    Article  ADS  Google Scholar 

  18. Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices (2008)

  19. Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. Probab. Theory Relat. Fields 167, 1057–1116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thiery, T., Le Doussal, P.: Exact solution for a random walk in a time-dependent 1D random environment: the point-to-point Beta polymer. J. Phys. A Math. Theor. 50, 045001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Huse, D.A., Henley, C.L., Fisher, D.S.: Huse, henley, and fisher respond. Phys. Rev. Lett. 55, 2924–2924 (1985)

    Article  ADS  Google Scholar 

  22. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1), 225–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices 01(01), 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Spohn, H.: The Kardar–Parisi-Zhang equation—a statistical physics perspective. arXiv:1601.00499 (2016)

  27. Le Doussal, P.: Crossover between various initial conditions in KPZ growth: flat to stationary. J. Stat. Mech. 5, 053210 (2017)

    Article  Google Scholar 

  28. Corwin, I., Quastel, J., Remenik, D.: Renormalization fixed point of the KPZ universality class. arXiv:1103.3422 (2011)

  29. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2017)

  30. Praehofer, M., Spohn, H.: Scale invariance of the PNG droplet and the airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. Theory Exp. 3, 03020 (2011)

    Article  MathSciNet  Google Scholar 

  32. Quastel, J., Remenik, D.: Airy processes and variational problems. In: Ramirez, A., Ben Arous, G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds.) Topics in Percolative and Disordered Systems, pp. 121–171. Springer, New York (2014)

    Google Scholar 

  33. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Phys. Lett. B 305, 115–118 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. EPL (Europhys. Lett.) 90(2), 20002 (2010)

    Article  ADS  Google Scholar 

  35. Amir, G., Corwin, I., Quastel, J.: Probability, distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dotsenko, V.: Bethe ansatz derivation of the tracy-widom distribution for one-dimensional directed polymers. EPL (Europhys. Lett.) 90(2), 20003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109, 205–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech. Theory Exp. 6, 06001 (2012)

    Article  Google Scholar 

  40. Ortmann, J., Quastel, J., Remenik, D.: Exact formulas for random growth with half-flat initial data. Ann. Appl. Probab. 26, 507–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Baik, J., Rains, E.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Imamura, T., Sasamoto, T.: Exact solution for the stationary Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 108, 190603 (2012)

    Article  ADS  Google Scholar 

  43. Borodin, A., Corwin, I., Ferrari, P., Vető, B.: Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18(1), 1–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Halpin-Healy, T.: Directed polymers in random media: probability distributions. Phys. Rev. A 44(6), R3415 (1991)

    Article  ADS  Google Scholar 

  45. Agoritsas, E., Lecomte, V.: Power countings versus physical scalings in disordered elastic systems—case study of the one-dimensional interface. J. Phys. A Math. Gen. 50, 104001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Schehr, G.: Extremes of n vicious walkers for large N: application to the directed polymer and kpz interfaces. J. Stat. Phys. 149(3), 385–410 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1 + 1 dimensions. Commun. Math. Phys. 317(2), 363–380 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the airy2 process minus a parabola. J. Math. Phys. 53(8), 083303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Dotsenko, V.: Distribution function of the endpoint fluctuations of one-dimensional directed polymers in a random potential. J. Stat. Mech. Theory Exp. 2013(02), P02012 (2013)

    Article  MathSciNet  Google Scholar 

  50. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\), Ann. Probab. 42, 1212–1256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bustingorry, S., Le Doussal, P., Rosso, A.: Universal high-temperature regime of pinned elastic objects. Phys. Rev. B 82, 140201 (2010)

    Article  ADS  Google Scholar 

  52. Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115(1), 255–279 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Le Doussal, P.: Maximum of airy plus Brownian processes, and persistent correlations in KPZ growth (2017, to appear)

  54. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Imamura, T., Sasamoto, T.: Stationary correlations for the 1D KPZ equation. J. Stat. Phys. 150, 908–939 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Martin, P., Siggia, E., Rose, H.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)

    Article  ADS  Google Scholar 

  57. Janssen, H.-K.: On a lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B Conden. Matter 23(4), 377–380 (1976)

    ADS  Google Scholar 

  58. Janssen, H.: On the renormalized field theory of nonlinear critical relaxation. In: From Phase Transitions to Chaos. Topics in Modern Statistical Physics, pp. 68–117. World Scientific, Singapore (1992)

  59. Täuber, U.: Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  60. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  61. Deker, U., Haake, F.: Fluctuation-dissipation theorems for classical processes. Phys. Rev. A 11(6), 2043 (1975)

    Article  ADS  Google Scholar 

  62. Bothner, T., Liechty, K.: Tail decay for the distribution of the endpoint of a directed polymer. Nonlinearity 26(5), 1449 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Prähofer, M., Spohn, H.: Current Fluctuations for the Totally Asymmetric Simple Exclusion Process. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  64. Thiery, T., Le Doussal, P.: Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz. J. Stat. Mech. Theory Exp. 10, 10018 (2014)

    Article  Google Scholar 

  65. Corwin, I., OConnell, N., Sepplinen, T., Zygouras, N.: Tropical combinatorics and whittaker functions. Duke Math. J. 163, 513–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324(1), 215–232 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Thiery, T.: Stationary measures for two dual families of finite and zero temperature models of directed polymers on the square lattice. J. Stat. Phys. 165(1), 44–85 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer. J. Stat. Phys. 160(4), 1027–1053 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Thiery, T., Le Doussal, P.: On integrable directed polymer models on the square lattice. J. Phys. A Math. Gen. 48, 465001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103(1), 010602 (2009)

    Article  ADS  MATH  Google Scholar 

  71. Baiesi, M., Maes, C.: An update on the nonequilibrium linear response. New J. Phys. 15(1), 013004 (2013)

    Article  ADS  Google Scholar 

  72. Basu, U., Krüger, M., Lazarescu, A., Maes, C.: Frenetic aspects of second order response. Phys. Chem. Chem. Phys. 17(9), 6653–6666 (2015)

    Article  Google Scholar 

  73. Aron, C., Biroli, G., Cugliandolo, L.F.: Symmetries of generating functionals of langevin processes with colored multiplicative noise. J. Stat. Mech. Theory Exp. 2010(11), P11018 (2010)

    Article  Google Scholar 

  74. Frey, E., Täuber, U.: Two-loop renormalization group analysis of the Burgers-Kardar-Parisi-Zhang equation. Phys. Rev. E 50, 1024–1045 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  75. Frey, E., Täuber, U., Hwa, T.: Mode coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424 (1996)

    Article  ADS  Google Scholar 

  76. Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 104, 150601 (2010)

    Article  ADS  Google Scholar 

  77. Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications. Phys. Rev. E 84(6), 061128 (2011)

    Article  ADS  Google Scholar 

  78. Maes, C., Redig, F., Moffaert, A.V.: On the definition of entropy production, via examples. J. Math. Phys. 41(3), 1528–1554 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T.T. is grateful to Vivien Lecomte and Pierre Le Doussal for stimulating discussions. T.T. has been supported by the InterUniversity Attraction Pole phase VII/18 dynamics, geometry and statistical physics of the Belgian Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimothée Thiery.

Appendix: Imamura–Sasamoto Result

Appendix: Imamura–Sasamoto Result

In this appendix we recall for completeness the result obtained by Imamura and Sasamoto in [55] for the analytical expression of the Burgers stationary two-point correlation function. We note that another (presumably equivalent) result could be obtained by using the formulas in the mathematically rigorous work [43]. In [55] Imamura and Sasamoto consider the KPZ equation with the convention

$$\begin{aligned} \partial _t h(t,x) = \frac{\lambda }{2} (\partial _x h(t,x))^2 + \nu \partial _x^2 h(t,x)+ \sqrt{D}\xi (t,x) , \end{aligned}$$
(79)

and we will thus take \(D=2 \nu =\lambda = 1\) in their result to conform with our conventions; see Eq. (5). Their result is given in terms of the scaling function \(g_t(y)\) which is defined asFootnote 7

$$\begin{aligned} g_t(y) = \int _{-\infty }^\infty s^2 \frac{d F_{w=0,t}(s;y)}{ds} ds- \left( \int _{-\infty }^\infty s \frac{d F_{w=0,t}(s;y)}{ds} ds\right) ^2 . \end{aligned}$$
(80)

And for each (ty), \(F_{w=0,t}(s;y)\) is the cumulative distribution function of the fluctuations of the KPZ interface at (ty): \(g_t(y)\) is the variance of the height at (ty). The expression for \(F_{w=0,t}\) is, using their parameters \(\alpha \) and \(\gamma _t\) are \(\alpha =1\) and \(\gamma _t=(t/2)^{1/3})\) (see Theorem 2 in [55])

$$\begin{aligned} F_{w=0,t}(s;X) = \frac{d/ds}{\Gamma (1+\gamma _t^{-1} d/ds)} \int _{{\mathbb R}} du e^{-\gamma _t(s-u)} \left( \nu _{w=0,t}(u;X) -\nu ^{(\delta )}_{w=0,t}(u;X)\right) ,\qquad \end{aligned}$$
(81)

with

$$\begin{aligned}&\nu _{w=0,t}(u;X) = \mathrm{Det}(I - A_{-X,X})L_{-X,X}(u) + \mathrm{Det}(I - A_{-X,X} - D_{-X,X}) \nonumber \\&\nu _{w=0,t}^{(\delta )}(u;X) = \mathrm{Det}(I - A_{-X,X}^{(\delta )})L_{-X,X}^{(\delta )}(u) + \mathrm{Det}(I - A_{-X,X}^{(\delta )} - D_{-X,X}^{(\delta )}) , \end{aligned}$$
(82)

and

$$\begin{aligned}&A_{-X,X}(\xi _1 , \xi _2) = C_t(\xi _1) \int _{u}^{\infty } dy Ai_{\Gamma }^{\Gamma }\left( \xi _1 + y ,\frac{1}{\gamma _t} , 1- \frac{X}{\gamma _t} , 1+ \frac{X}{\gamma _t}\right) \nonumber \\&Ai_{\Gamma }^{\Gamma }\left( \xi _2 + y ,\frac{1}{\gamma _t} , 1+ \frac{X}{\gamma _t} , 1-\frac{X}{\gamma _t}\right) \nonumber \\&D_{-X,X}(\xi _1,\xi _2) = (A_{-X,X}C_t B_{-X,X,u})(\xi _1)B_{X,-X,u}(\xi _2) \nonumber \\&L_{X,-X}(u) = - \frac{2\gamma _E}{\gamma _t} + u -X^2 -1 \nonumber \\&\!+\! \int _{{\mathbb R}} dx C_t(x)\left( B_{\!-\!X,X,u}^{(1)}(x) B_{X,\!-\!X,u}^{(2)}(x) \!+\! B_{X,-X,u}^{(1)}(x) B_{-X,X,u}^{(2)}(x) \!-\! B_{-X,X,u}^{(2)}(x) B_{X,-X,u}^{(2)}(x) \right) \nonumber \\&B_{-X,X,u}^{(1)}(x) = e^{-X^3/2 + (x+u) X},\nonumber \\&B_{-X,X,u}^{(2)}(x) = \int _{0}^{\infty } d\lambda e^{-X\lambda } Ai_{\Gamma }^{\Gamma }\left( x + u + \lambda , \frac{1}{\gamma _t} , 1 + \frac{X}{\gamma _t} , 1 - \frac{X}{\gamma _t}\right) \nonumber \\&B_{-X,X,u}(x) = B_{-X,X,u}^{(1)}(x) - B_{-X,X,u}^{(2)}(x), \quad C_t(x) = \frac{e^{\gamma _t x }}{e^{\gamma _t x}-1}. \end{aligned}$$
(83)

The expression with the superscript \(\delta \) are identical with \(C_t(x) \rightarrow C_t(x)^{(\delta )} = C_t(x) - \delta (x)\). \(\gamma _E\) in the expression of \(L_{X,-X}(u)\) denotes Euler’s gamma constant. Finally the function \(Ai_{\Gamma }^{\Gamma }\) is a deformed Gamma function defined by

$$\begin{aligned} Ai_{\Gamma }^{\Gamma }(a,b,c,d) = \frac{1}{2\pi } \int _{\Gamma _{id/b}} dz e^{i z a + i \frac{z^3}{3}} \frac{\Gamma (ib z + d)}{\Gamma (-ibz + c)} \end{aligned}$$
(84)

with \(\Gamma _{id/b}\) a contour from \(-\infty \) to \(+\infty \) passing below id / b. In (81) \(\frac{1}{\Gamma (1 + \gamma _t^{-1} d/ds)}\) is the operator defined by the Taylor expansion of the Gamma function around 1, and \(\mathrm{Det}(I-K) \) denotes the Fredholm determinant of the operator with the kernels defined above, and \((\xi _1,\xi _2)\in {\mathbb R}^2\). No matter how complicated this result seems it can indeed be plotted, see Fig. 3 in [55]. In the limit \(t \rightarrow \infty \) the results simplifies a bit. In that case \(g_{\infty }(y)\) is still given by a variance, but now associated with the cumulative distribution function \(F_{w=0}(s;y)=\lim _{t\rightarrow \infty }F_{x=0,t}(s;y)\). An explicit expression for \(F_{w=0}(s;y)\) was given in Theorem 3 of [55].

Let us finally make the connection with our setting. In [55] \(g_t(y)\) is related to Burgers’ stationary two-point correlation through (see around Corollary 4)

$$\begin{aligned} g_t(y)= \left( \frac{2}{ t} \right) ^{2/3} C(t , (2 t^2)^{1/3} y) , \end{aligned}$$
(85)

and

$$\begin{aligned} \langle u(t,x) u(0,0) \rangle _0^0 = \frac{1}{2} \partial _x^2 C(t,x) . \end{aligned}$$
(86)

Following our result (8) and the rescaling (9) one thus easily arrives at Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, C., Thiery, T. Midpoint Distribution of Directed Polymers in the Stationary Regime: Exact Result Through Linear Response. J Stat Phys 168, 937–963 (2017). https://doi.org/10.1007/s10955-017-1839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1839-2

Keywords

Navigation