Skip to main content
Log in

Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov’s principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron–phonon interaction, which demonstrates that generally the initial correlations influence the correlation function’s evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at \(t\rightarrow \infty \)) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoliubov, N.N.: Problems of Dynamical Theory in Statistical Physics. Gostekhizdat, Moscow (1946, in Russian); English translation: Studies in Statistical Mechanics, vol. 1. North-Holland, Amsterdam (1962)

  2. van Kampen, N.G.: A new approach to noise in quantum mechanics. J. Stat. Phys. 115, 1057–1072 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Los, V.F.: Homogeneous generalized master equation retaining initial correlations. J. Phys. A 34, 6389–6403 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Los, V.F.: Homogeneous generalized master equations. J. Stat. Phys. 119, 241–271 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Los, V.F.: Nonlinear generalized master equations and accounting for initial correlations. Theor. Math. Phys. 160, 1124–1143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Los, V.F.: Homogeneous and nonlinear generalized master equations: a new type of evolution equations. In: Claes, A. (ed.) Evolution Equations, pp. 251–302. Nova Science Publishers, New York (2012)

    Google Scholar 

  7. Nakajima, S.: On quantum theory of transport phenomena. Prog. Theor. Phys. 20, 948–959 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zwanzig, R.: Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  9. Prigogine, I.: Non-equilibrium Statistical Mechanics. Interscience Publishers, New York (1962)

    MATH  Google Scholar 

  10. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  11. Shibata, F., Takahashi, Y., Hashitsume, N.: A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 17, 171–187 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  12. Shibata, F., Arimitsu, T.: Expansion formulas in nonequilibrium statistical mechanics. J. Phys. Soc. Jpn. 49, 891–897 (1980)

    Article  ADS  Google Scholar 

  13. Landau, L.D.: Electron motion in crystal lattices. Phys. Z. Sowjetunion 3, 664–665 (1933)

    Google Scholar 

  14. Pekar, S.I.: Studies on Electron Theory of Crystals. Gostekhizdat, Moscow (1951, in Russian)

  15. Devreese, J.T.: Lecture course including detailed theoretical derivations. arXiv:1012.4576v6 (2015)

  16. Feynman, R.P.: Slow electrons in a polar crystal. Phys. Rev. 97, 660–665 (1955)

    Article  ADS  MATH  Google Scholar 

  17. Kadanoff, L.P.: Boltzmann equation for polarons. Phys. Rev. 130, 1364–1369 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. Feynman, R., Hellwarth, R., Iddings, C., Platzman, P.: Mobility of slow electrons in a polar crystal. Phys. Rev. 127, 1004–1017 (1962)

    Article  ADS  MATH  Google Scholar 

  19. Sels, D., Brosens, F.: Truncated phase-space approach to polaron response. Phys. Rev. E 89, 012124 (2014)

    Article  ADS  Google Scholar 

  20. Los, V.F.: On the theory of crystal conductivity. Theor. Math. Phys. 60, 703–715 (1984)

    Article  MathSciNet  Google Scholar 

  21. Chester, G.V., Thellung, A.: On the electrical conductivity in metals. Proc. Phys. Soc. 73, 745–766 (1959)

    Article  ADS  MATH  Google Scholar 

  22. Kenkre, V.M., Dresden, M.: Theory of electrical resistivity. Phys. Rev. A 6, 769–775 (1972)

    Article  ADS  Google Scholar 

  23. Kubo, R.: Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor F. Los.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Los, V.F. Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility. J Stat Phys 168, 857–872 (2017). https://doi.org/10.1007/s10955-017-1818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1818-7

Keywords

Navigation