Advertisement

Journal of Statistical Physics

, Volume 168, Issue 3, pp 549–560 | Cite as

Rotational Brownian Motion: Trajectory, Reversibility and Stochastic Entropy

  • Swarnali Bandopadhyay
  • Debasish ChaudhuriEmail author
  • A. M. Jayannavar
Article

Abstract

Stochastic motion of macrospins is similar to driven diffusion of Brownian particles on the surface of a sphere. One crucial difference is in how the micro-states transform under time reversal. This dictates the form of stochastic entropy production (sEP). An excess sEP in the reservoir, in addition to a Clausius term, may appear depending on the interpretation of stochastic trajectory, thereby, precluding such analysis without a detailed knowledge of the governing dynamics. To show this, we derive expressions of sEP using Fokker–Planck equation, and the ratio of probability distributions of time-forward and time-reversed trajectories. We calculate probability distributions of sEP using numerical simulations, and obtain good agreement with the detailed fluctuation theorem. Within adiabatic approximation, analytic form for the distribution function is also derived.

Keywords

Brownian motion Macrospin Fluctuation theorem 

Notes

Acknowledgements

SB and DC thank Sashideep Gutti for useful discussions. AMJ thanks DST, India for financial support. SB acknowledges DST, India for financial support through Grant No. SR/WOS-A/PM-52/2016.

References

  1. 1.
    Jarzynski, C.: Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matt. Phys. 2, 329 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems, and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Sekimoto, K.: Langevin equation and thermodynamics. Prog. Theo. Phys. Suppl. 130, 17 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Lebowitz, J.L.: a Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, I: jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Baiesi, M., Boksenbojm, E., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, II: inertial dynamics. J. Stat. Phys. 139, 492 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hummer, G., Szabo, A.: Free energy profiles from single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 107, 21441 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Kurchan, J.: Non-equilibrium work relations. J. Stat. Mech. Theor. Exp. 7, P07005 (2007)Google Scholar
  14. 14.
    Narayan, O., Dhar, A.: Reexamination of experimental tests of the fluctuation theorem. J. Phys. A: Math Gen. 37, 63 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jayannavar, A.M., Sahoo, M.: Charged particle in a magnetic field: Jarzynski equality. Phys. Rev. E 75, 032102 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Saha, A., Lahiri, S., Jayannavar, A.M.: Entropy production theorems and some consequences. Phys. Rev. E 80, 011117 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lahiri, S., Jayannavar, A.M.: Total entropy production fluctuation theorems in a nonequilibrium time-periodic steady state. The Euro. Phys. J. B 69, 87 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Sahoo, M., Lahiri, S., Jayannavar, A.M.: Fluctuation theorems and atypical trajectories. J. Phys. A: Math. Theor. 44, 205001 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lahiri, S., Jayannavar, A.M.: Derivation of not-so-common fluctuation theorems (2014). arXiv:1402.5588
  20. 20.
    Seifert, U.: Stochastic thermodynamics of single enzymes and molecular motors. Eur. Phys. J. E 34, 26 (2011)CrossRefGoogle Scholar
  21. 21.
    Ganguly, C., Chaudhuri, D.: Stochastic thermodynamics of active Brownian particles. Phys. Rev. E 88, 032102 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Chaudhuri, D.: Active Brownian particles: entropy production and fluctuation response. Phys. Rev. E 90, 022131 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Chaudhuri, D.: Entropy production by active particles: coupling of odd and even functions of velocity. Phys. Rev. E 94, 032603 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, G., Sevick, E., Mittag, E., Searles, D., Evans, D.: Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Blickle, V., Speck, T., Helden, L., Seifert, U., Bechinger, C.: Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 24 (2006)CrossRefGoogle Scholar
  26. 26.
    Speck, T., Blickle, V., Bechinger, C., Seifert, U.: Distribution of entropy production for a colloidal particle in a nonequilibrium steady state. Euro. Phys. Lett. 79, 30002 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Joubaud, S., Lohse, D., van der Meer, D.: Fluctuation theorems for an asymmetric rotor in a granular gas. Phys. Rev. Lett. 108, 210604 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Hayashi, K., Ueno, H., Iino, R., Noji, H.: Fluctuation theorem Applied to F_1-ATPase. Phys. Rev. Lett. 104, 218103 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Hayashi, K., Tanigawara, M., Kishikawa, J.I.: Measurements of the driving forces of bio-motors using the fluctuation theorem. Biophysics 8, 67 (2012)CrossRefGoogle Scholar
  31. 31.
    Zimmermann, E., Seifert, U.: Efficiencies of a molecular motor: a generic hybrid model applied to the F_1-ATPase. New J. Phys. 14, 103023 (2012)CrossRefGoogle Scholar
  32. 32.
    Blanter, Y.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Brown Jr., W.F.: Thermal fluctuations of a single domain particle. Phys. Rev. 130, 1677 (1963)ADSCrossRefGoogle Scholar
  34. 34.
    Coffey, W.T., Kalmykov, Y.P.: Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J. Appl. Phys. 112, 121301 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Koch, R.H., Grinstein, G., Keefe, G.A., Lu, Y., Trouilloud, P.L., Gallagher, W.J., Parkin, S.S.P.: Thermally assisted magnetization reversal in submicron-sized magnetic thin films. Phys. Rev. Lett. 84, 5419 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Bandopadhyay, S., Chaudhuri, D., Jayannavar, A.M.: Macrospin in external magnetic field: entropy production and fluctuation theorems. J. Stat. Mech. Theor. Exp. 11, P11002 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bandopadhyay, S., Chaudhuri, D., Jayannavar, A.M.: Stochastic thermodynamics of macrospins with fluctuating amplitude and direction. Phys. Rev. E 92, 032143 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Tserkovnyak, Y., Brataas, A.: Shot noise in ferromagnet-normal metal systems. Phys. Rev. B 64, 214402 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Foros, J., Brataas, A., Tserkovnyak, Y., Bauer, G.E.W.: Magnetization Noise in Magnetoelectronic Nanostructures. Phys. Rev. Lett. 95, 016601 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Foros, J., Brataas, A., Bauer, G.E.W., Tserkovnyak, Y.: Resistance noise in spin valves. Phys. Rev. B 75, 092405 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Bandopadhyay, S., Brataas, A., Bauer, G.E.W.: Feedback control of noise in spin valves by the spin-transfer torque. Appl. Phys. Lett. 98, 083110 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    M. Covington, U.S.Patent No. 7,042,685 (9 May 2006)Google Scholar
  43. 43.
    Utsumi, Y., Taniguchi, T.: Fluctuation theorem for a small engine and magnetization switching by spin torque. Phys. Rev. Lett. 114, 186601 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Marathe, R., Dhar, A.: Work distribution functions for hysteresis loops in a single-spin. Phys. Rev. E 72, 066112 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Einax, M., Maass, P.: Work distributions for ising chains in a time-dependent magnetic field. Phys. Rev. E 80, 020101 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Ma, P.-W., Dudarev, S.L.: Longitudinal magnetic fluctuations in Langevin spin dynamics. Phys. Rev. B 86, 054416 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Seshadri, V., Lindenberg, K.: Dissipative contributions of internal multiplicative noise: II. Spin systems. Physica A 115, 501 (1982)ADSCrossRefGoogle Scholar
  48. 48.
    Jayannavar, A.M.: Brownian motion of spins: generalized spin Langevin equation. Z. Phys. B - Cond. Matt. 82, 153 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    Kubo, R.: Fluctuation. Relaxation and Resonance in Magnetic Systems. edited by D. ter Haar, Oliver and Boyd, Edinburgh (1962)Google Scholar
  50. 50.
    Kubo, R., Hashitsume, N.: Brownian motion of spins. Prog. Theor. Phys. Suppl. 46, 210 (1970)ADSCrossRefGoogle Scholar
  51. 51.
    García-Palacios, J.L., Lázaro, F.J.: Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58, 14937 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Cheng, X.Z., Jalil, M.B.A., Lee, H.K., Okabe, Y.: Mapping the Monte Carlo scheme to Langevin dynamics: a Fokker-Planck approach. Phys. Rev. Lett. 96, 067208 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Nowak, U., Chantrell, R.W., Kennedy, E.C.: Monte Carlo simulation with time step quantification in terms of Langevin dynamics. Phys. Rev. Lett. 84, 163 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    Aron, C., Barci, D.G., Cugliandolo, L.F., Arenas, Z.G., Lozano, G.S.: Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation. J. Stat. Mech. : Theor. Exp. 9, P09008 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lau, A.W.C., Lubensky, T.C.: State-dependent diffusion: thermodynamic consistency and its path integral formulation. Phys. Rev. E 76, 011123 (2007)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)zbMATHGoogle Scholar
  57. 57.
    Spinney, R.E., Ford, I.J.: Nonequilibrium thermodynamics of stochastic systems with odd and even variables. Phys. Rev. Lett. 108, 170603 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    Tomé, T.: Entropy production in nonequilibrium systems described by a Fokker-Planck equation. Braz. J. Phys. 36, 1285 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    de Tomé, T., Oliveira, M.J.: Entropy production in irreversible systems described by a Fokker-Planck equation. Phys. Rev. E 82, 021120 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    de Tomeé, T., Oliveira, M.J.: Stochastic approach to equilibrium and nonequilibrium thermodynamics. Phys. Rev. E 91, 042140 (2015)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Hiebert, W.K., Lagae, L., Das, J., Bekaert, J., Wirix-Speetjens, R., De Boeck, J.: Fully controlled precessional switching of a macrospin in a cross-wire geometry. J. Appl. Phys. 93, 6906 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    Kruglyak, V.V., Barman, A., Hicken, R.J., Childress, J.R., Katine, J.A.: Precessional dynamics in microarrays of nanomagnets. J. Appl. Phys. 97, 10A706 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Physics, Sachivalaya MargBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, AnushaktinagarMumbaiIndia
  3. 3.TIFR Centre for Interdisciplinary SciencesHyderabadIndia

Personalised recommendations