Advertisement

Journal of Statistical Physics

, Volume 168, Issue 1, pp 1–10 | Cite as

Casimir Force of Two-Component Bose–Einstein Condensates Confined by a Parallel Plate Geometry

  • Nguyen Van Thu
  • Luong Thi Theu
Article

Abstract

Using field theory we calculate the Casimir energy and Casimir force of two-component Bose-Einstein condensates restricted between two parallel plates, in which Dirichlet and periodic boundary conditions applied. Our results show that, in one-loop approximation, the Casimir force equals to summation of the one of each component and it is vanishing in some cases: (i) inter-distance between two plates becomes large enough; (ii) intraspecies interaction is zero; (iii) interspecies interaction is full strong segregation.

Keywords

Bose–Einstein mixtures Casimir force Finite-size effect 

Mathematics Subject Classification

81T55 82B10 82D05 

Notes

Acknowledgements

It is our pleasure to acknowledge valuable discussions with Prof. Tran Huu Phat, Jurgen Schiefele, Shyamal Biswas and Nguyen Thi Tham.

References

  1. 1.
    Casimir, H.B.G., Polder, D.: The influences of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)zbMATHGoogle Scholar
  3. 3.
    Edery, A.: Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields. J. Phys. A 39, 685 (2006)MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. 4.
    Phat, T.H., Thu, N.V.: Finite-size effect of linear sigma model in compactified space-time. Int. J. Mod. Phys. A 29, 1450078 (2014)MathSciNetCrossRefzbMATHADSGoogle Scholar
  5. 5.
    Recati, A., Fuchs, J.N., Peca, C.S., Zwerger, W.: Casimir forces between defects in one-dimensional quantum liquids. Phys. Rev. A 72, 023616 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1 (2001)MathSciNetCrossRefzbMATHADSGoogle Scholar
  7. 7.
    Biswas, S.: Bose–Einstein condensation and the Casimir effect for an ideal Bose gas confined between two slabs. J. Phys. A 40, 9969 (2007)MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. 8.
    Biswas, S.: Bose–Einstein condensation and Casimir effect of trapped ideal Bose gas in between two slabs. Eur. Phys. J. D 42, 109 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Biswas, S., Bhattacharjee, J.K., Majumder, D., Saha, K., Chakravarty, N.: Casimir force on an interacting Bose–Einstein condensates. J. Phys. B 43, 085305 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Schiefele, J., Henkel, C.: Casimir energy of a BEC: from moderate interactions to the ideal gas. J. Phys. A 42, 045401 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Martin, P.A., Zagrebnov, V.A.: The Casimir effect for the Bose-gas in slabs. Europhys. Lett. 73, 15 (2006)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Harber, D.M., Obrecht, J.M., McGuirk, J.M., Cornell, E.A.: Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate. Phys. Rev. A 72, 033610 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Van Thu, N.: Static properties of Bose–Einstein condensate mixtures in semi-infinite space. Phys. Lett. A 380, 2920 (2016)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Van Thu, N., Phat, T.H., Song, P.T.: Finite-size effects of surface tension in two segregated BECs confined by two hard walls. J. Low Temp. Phys. 186, 127 (2017)CrossRefADSGoogle Scholar
  15. 15.
    Indekeu, J.O., Lin, C.-Y., Thu, N.V., Van Schaeybroeck, B., Phat, T.H.: Static interfacial properties of Bose–Einstein-condensate mixtures. Phys. Rev. A 91, 033615 (2015)CrossRefADSGoogle Scholar
  16. 16.
    Deng, Z., Schaeybroeck, B.V., Lin, C.-Y., Thu, N.V., Indekeu, J.O.: Interfacial tension and wall energy of a Bose–Einstein condensate binary mixture: triple-parabola approximation. Physica A 444, 1027 (2016)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Mazets, I.E.: Waves on an interface between two phase-separated Bose–Einstein condensates. Phys. Rev. 65, 033618 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Indekeu, J.O., Thu, N.V., Lin, C.-Y., Phat, T.H.: Capillary wave dynamics and interface structure modulation in binary Bose–Einstein condensate mixtures. Submitted to Phys. Rev. A (2016)Google Scholar
  19. 19.
    Takahashi, D.A., Kobayashi, M., Nitta, M.: Nambu-Goldstone modes propagating along topological defects: Kelvin and ripple modes from small to large systems. Phys. Rev. B 91, 184501 (2015)CrossRefADSGoogle Scholar
  20. 20.
    Lipowsky, R.: Random Fluctuations and Pattern Growth (H. Stanley, N. Ostrowsky, ed.). NATO ASI Series E, vol. 157, pp. 227–245. Kluwer Academic Publishers, Dordrecht (1988) and references hereinGoogle Scholar
  21. 21.
    Phat, T.H., Hoa, L.V., Anh, N.T., Long, N.V.: Bose-Einstein condensation in binary mixture of Bose gases. Ann. Phys. 324, 2074 (2009)CrossRefzbMATHADSGoogle Scholar
  22. 22.
    Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  23. 23.
    Pethick, C.J., Smith, H.: Contemporary concepts of condensed matter science. In: Levin, K., Fetter, A.L., Stamper-Kurn, D.M. (eds.) Ultracold Bosonic and Fermionic Gases. Elsevier, Amsterdam (2012)Google Scholar
  24. 24.
    Ao, P., Chui, S.T.: Binary Bose–Einstein condensate mixtures in weakly and strongly segregated phases. Phys. Rev. A 58, 4836 (1998)CrossRefADSGoogle Scholar
  25. 25.
    Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  26. 26.
    Andersen, J.O.: Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599 (2004)MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. 27.
    Saharian, A.A.: The generalized Abel–Plana formula with applications to Bessel functions and Casimir effect. arXiv:0708.1187
  28. 28.
    Inouye, S., Andrews, M.R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D.M., Ketterle, W.: Observation of Feshbach resonances in a Bose–Einstein condensate. Nature (London) 392, 151 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Department of PhysicsHanoi Pedagogical University 2HanoiVietnam

Personalised recommendations