Journal of Statistical Physics

, Volume 168, Issue 2, pp 408–433 | Cite as

Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

  • Yakir Forman
  • Maria CameronEmail author


We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for \(N+1\), and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.


Aggregation Lennard-Jones Continuous-time Markov chain Attachment rate Expected initial and pre-attachment distribution 



This work was partially supported by the NSF Grant DMS1554907 and the NSF REU Grant DMS1359307 at the University of Maryland, College Park.


  1. 1.
    Arkus, N., Manoharan, V., Brenner, M.P.: Minimal energy clusters of hard spheres with short ranged attractions. Phys. Rev. Lett. 103, 118303 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Baletto, F., Rapallo, A., Rossi, G., Ferrando, R.: Dynamical effects in the formation of magic cluster structures. Phys. Rev. B 69, 235421 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Becker, O.M., Karplus, M.: The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106(4), 1495 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Calvo, F., Schebarchov, D., Wales, D.J.: Grand and semigrand canonical basin-hopping. J. Chem. Theory Comput. 12, 902–909 (2016)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Cameron, M., Vanden-Eijnden, E.: Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement. J. Stat. Phys. 156(3), 427–454 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cameron, M.K.: Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network. J. Chem. Phys. 141, 184113 (2014)CrossRefGoogle Scholar
  8. 8.
    Cameron, M.K., Gan, T.: Spectral analysis and clustering of large stochastic networks. Application to the Lennard-Jones-75 cluster. Mol. Simul. 42(16), 1410–1428 (2016)CrossRefGoogle Scholar
  9. 9.
    Carr, J.M., Wales, D.J.: Folding pathways and rates for the three-stranded -sheet peptide Beta3s using discrete path sampling. J. Phys. Chem. B 112, 8760–8769 (2008)CrossRefGoogle Scholar
  10. 10.
    Doye, J.P.K., Wales, D.J., Miller, M.A.: Thermodynamics and the global optimization of Lennard-Jones clusters. J. Chem. Phys. 109, 8143 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Doye, J.P.K., Wales, D.J., Miller, M.A.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)ADSGoogle Scholar
  13. 13.
    Weinan, E., Ren, W., Vanden-Eijnden, E.: Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126, 164103 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Weinan, E., Zhou, X.: The gentlest ascend dynamics. Nonlinearity 24, 1831–1842 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Echt, O., Sattler, K., Recknagel, E.: Magic numbers for sphere packings: experimental verification in free xenon clusters. Phys. Rev. Lett. 47(16), 1121–1124 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    Echt, O., Kandler, O., Leisner, T., Mlechle, W., Recknagel, E.: Magic numbers in mass spectra of large van der Waals clusters. J. Chem. Soc. Faraday Trans. 86, 2411 (1990)CrossRefGoogle Scholar
  17. 17.
    Farges, J., de Feraudy, M.F., Raoult, B., Torchet, G.: Structure and temperature of rare gas clusters in a supersonic expansion. Surf. Sci. 106, 95 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    Fejer, S.N., Wales, D.J.: Helix self-assembly from anisotropic molecules. Phys. Rev. Lett. 99, 086106 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Gao, W., Leng, J., Zhou, X.: Iterative minimization algorithm for efficient calculations of transition states. J. Comp. Phys. 309, 6987 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Harris, I.A., Kidwell, R.S., Northby, J.A.: Structure of charged argon clusters formed in free jet expansion. Phys. Rev. Lett. 53, 2390 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Harris, I.A., Norman, K.A., Mulkern, R.V., Northby, J.A.: Icosahedral structure of large charged argon clusters. Chem. Phys. Lett. 130, 316 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Henkelman, G., Jonsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Holmes-Cerfon, M., Gortler, S.J., Brenner, M.P.: A geometrical approach to computing free-energy landscapes from short-ranged potentials. Proc. Natl. Acad. Sci. USA 110(1), E5–E14 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Holmes-Cerfon, M.: Sticky-sphere clusters. Annu. Rev. Condens. Matter Phys. In press (expected 8, March 10, 2017)Google Scholar
  25. 25.
    Jonsson, H., Mills, G., Jacobsen, K.W.: Nudged elastic band method for finding minimum energy paths of transitions. In: Berne, B.J., Ciccotti, G., Coker, D.F. (eds.) Classical and Quantum Dynamics in Condensed Phase Simulations, vol. 385. World Scientific, Singapore (1998)Google Scholar
  26. 26.
    Kakar, S., Bjoerneholm, O., Weigelt, J., de Castro, A.R.B., Troeger, L., Frahm, R., Moeller, T.: Size-dependent K-edge EXAFS study of the structure of free Ar clusters. Phys. Rev. Lett. 78(9), 1675–1678 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Kovalenko, S.I., Solnyshkin, D.D., Verkhovtseva, E.T., Eremenko, V.V.: Experimental detection of stacking faults in rare gas clusters Chem. Phys. Lett. 250, 309 (1996)Google Scholar
  28. 28.
    Langer, J.S.: Statistical theory of the decay of metastable states. Ann. Phys. 54, 258–275 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    Mandelshtam, V.A., Frantsuzov, P.A.: Multiple structural transformations in Lennard-Jones clusters: generic versus size-specific behavior. J. Chem. Phys. 124, 204511 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Meng, G., Arkus, N., Brenner, M.P., Manoharan, V.: The free energy landscape of hard sphere clusters. Science 327, 560 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Miller, M.A., Wales, D.J.: Isomerization dynamics and ergodicity in Ar 7. J. Chem. Phys. 107, 8568 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    Munro, L.J., Wales, D.J.: Defect migration in crystalline silicon. Phys. Rev. B 59, 3969–3980 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  34. 34.
    Picciani, M., Athenes, M., Kurchan, J., Taileur, J.: Simulating structural transitions by direct transition current sampling: the example of LJ38. J. Chem. Phys. 135, 034108 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Stillinger, F.H.: Exponential multiplicity of inherent structures. Phys. Rev. E 59(1), 48–51 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Wallace, D.C.: Statistical mechanics of monatomic liquids. Phys. Rev. E 56(4), 4179–4186 (1997)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)CrossRefGoogle Scholar
  38. 38.
    Wales, D.J.: Discrete path sampling. Mol. Phys. 100, 3285–3306 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    van de Waal, B.W.: No evidence for size-dependent icosahedral \(\rightarrow \) fcc structural transition in rare-gas clusters. Phys. Rev. Lett. 76(7), 1083–1086 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    Wales, D.J.: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge University Press, Cambridge (2003)Google Scholar
  41. 41.
    Wales, D.J.: Energy landscapes: calculating pathways and rates. Int. Rev. Chem. Phys. 25(1–2), 237–282 (2006)CrossRefGoogle Scholar
  42. 42.
    Wales, D.J.: Energy landscapes of clusters bound by short-ranged potentials. ChemPhysChem 11(12), 2491–2494 (2010)CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Zhang, J., Du, Q.: Shrinking dimer dynamics and its applications to saddle point search. SIAM J. Numer. Anal. 50(4), 1899–1921 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Yeshiva UniversityNew YorkUSA
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations